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Abstract

JavaScript performance is a hot topic for pushing the boundaries of web
applications. Today, browser vendors compare to each other mainly on
JavaScript benchmark scores rather than other web browsing features. How-
ever, recent studies [1] suggest that popular benchmarking suites do not re-
flect the behavior of real web applications. We present an extensive analysis
of JavaScript heaps in 11 real-world web applications to aid the development
of more realistic workloads for benchmarking the memory management of
JavaScript virtual machines. In this thesis, we confirm empirical results on
object type and object lifetime distribution [1] and contribute new insights
on object size distribution as well as heap structure properties.



1 Introduction

JavaScript is part of many modern web applications and became an essential component of modern web
development. For JavaScript-intensive web applications it is necessary that a browser provides a well per-
forming JavaScript virtual machine. Since JavaScript is a garbage collected programming language the
memory management is a task of the virtual machine. As a consequence, the performance of JavaScript
virtual machines may be enhanced by improving memory management performance. This requires a better
understanding of performance deficiencies.

Industry-standard benchmark suites support implementation and optimization of JavaScript virtual ma-
chines, but studies, like [1] illustrate that these benchmarks do not represent a real-world web application
behavior. To optimize a JavaScript virtual machine, a configurable and realistic benchmarking of memory
management is needed. Realistic benchmarking is only possible if typical JavaScript heaps are known.

We propose our analysis results of JavaScript heaps of real-world applications. First we integrate a
snapshotting functionality in Google’s Chromium [2] virtual machine V8 [3]. This mechanism periodically
generates a snapshot of the current JavaScript heap. We study 11 real-world web applications which are
similar to those in [1]. Depending on the application we analyze different user interactions are performed.
The complete list of applications and user interactions is presented in Table 1. Finally, we analyze the
structure and distributions of object properties of these snapshots. Section 2 describes the tool chain we
have used to generate and analyze snapshots in detail.

The heap snapshots contain objects allocated by the JavaScript program (called mutator in garbage
collection terminology) and objects allocated by the virtual machine. Section 3 describes our analysis of
objects allocated by a mutator, the so-called mutator heap and Section 4, takes a closer look at the objects
allocated by the virtual machine, the so-called system heap. Finally, Section 5 presents differences and
similarities of mutator and system heap. For both, mutator and virtual machine allocated objects, we
analyze the following properties and their distributions: object type, size, lifetime, the number of out-going
edges, and the minimum distance from a heap root to a object. Our analysis illustrates the allocation
behavior of real-world web applications and present the overhead of V8.

In this work we extend studies on the allocation behavior of real JavaScript web applications [1]. This
thesis makes the following contribution: An analysis of popular and JavaScript-intensive real-world web
applications to obtain realistic distributions of object properties and heap structure properties.

2 Analysis Tools

2.1 Simple, artificial mutator

We started our research with some simple, artificial mutators. Our aim was to get an overview of the
behavior of different JavaScript garbage collectors. Therefore, we used three different mutators, which

• Only allocate short-living objects,

• Only allocate long-living objects, and

• A combination of the two above.

With these three mutators we started our measurements. We differ between so-called blackbox and whitebox
data. The blackbox data cover the execution time of a mutator and the real memory (resident set size) used
of a mutator process. The whitebox data require information about the JavaScript virtual machine. We
get the whitebox information from Google’s V8. This data contains information about heap size, garbage
collector frequency, and amount of memory that is collected (in byte).

Figure 1 presents measures of such a simple mutator. This mutator only allocates objects and keeps
them live until the mutator terminates. The y-axis on the left shows the memory in MB and is used for the
heap size (heap), resident set size (rss), and mark and sweep (mark-sweep). The y-axis on the right shows
the number of live objects in thousands and on the x-axis the real time is displayed. Live objects are objects
that are not collected by the garbage collector yet. For the live objects we expect a linear growing, but the
Figure shows that the allocation of objects sometimes pauses which is a result of garbage collection. If we
look at the resident set size and the heap size we see the dependency between these. The heap size presents
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Figure 1: Simple mutator which only allocates objects and never deallocates.
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Figure 2: Execution time: V8 vs. SpiderMonkey

more details about the garbage collection. The little spikes represent the collection of short-living objects.
In our case this behavior shows a collection of system objects, because the mutator does not deallocate any
objects. The bigger negative going flanks represent a mark and sweep phase of the garbage collector. A
mark and sweep phase shows the collection of long-living objects. This simple mutator allows us to show
some of the characteristics of a garbage collector.

Figure 2 presents the execution time of a mutator which frequently deallocates a static amount of
memory. We increase the lifetime of the allocated objects and measure the execution time. The lifetime is
the duration since a object is allocated until it is deallocated. The so-called liveness of a object is similar
to the lifetime. The x-axis of the figure shows the maximum liveness of the allocated objects and on the
y-axis the execution time is displayed. A comparison of Google’s V8 with Mozilla’s SpiderMonkey shows
significant differences. If we look at the line of V8 we see some big spikes at a liveness of 30, 60, and 90.
A reason for these spikes is the communication with the operating system. If the heap size of V8 overruns
one of the internal bounds the process requests more memory from the operating system. If the heap size
falls below such a bound the process responses memory to the operating system. In our case the heap size
is toggling around such bounds. As a result there is a lot more communication with the operation system
than usually which has a large impact on the execution time of the mutator.

The conclusion of our first mutator measurements is, that we are able to visualize characteristics of a
garbage collector. Furthermore, we can show differences between different virtual machines. These mutators
represent some corner cases, and if we think of a realistic JavaScript application there will be a different
behavior.
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Figure 3: Tool chain for analyzing the JavaScript heap of a real-world web application

2.2 Tools for obtaining a realistic heap model

Developing a benchmark which is able to simulate a realistic JavaScript heap requires understanding the
heap of real-world applications. As shown by some related work [1, 4, 5] the state-of-the-art benchmarks
do not represent realistic heap behavior. In this section we describe our analysis to obtain a realistic heap
model.

Our analysis are based on frequent generated snapshots of the JavaScript heap of a real-world application.
The list of analyzed applications and proceeded user interactions is shown in Table 1 on page 4. Figure 3
presents the complete toolchain we used to generate and analyze these snapshots.

For the simulation of a realistic user interaction on a real-world application we used Selenium [6]. All user
interactions we analyze are collected in the so-called AutomatedUserInteraction tool (see Section 2.2.1). For
execution of a interaction we use a custom version of Chromium. We add a mechanism that periodic produces
a snapshot of the JavaScript heap (for details see Section 2.2.2). The so-called HeapSnapshotAnalyzer

analyzes these snapshots. The exact process is explained in Section 2.2.3.

2.2.1 Tool for automating user interaction

To simulate a realistic user interaction we decided to automate this process by using Selenium [6]. A benefit
of using Selenium is that we are able to repeat a user interaction as often as we want in exact the same
way. Selenium also enables the opportunity to use different browsers. This feature allows us to run a user
interaction on different browsers or use our own browser binary in a very easy way. For the heap snapshot
generation we use our own custom Chromium binary (for details see Section 2.2.2). The Table 1 shows all
these real-world applications and the user interaction we perform. For each kind of web application the user
interaction is tailored individually. The collection of all user interactions and a mechanism to switch between
different browser binaries is provided by the so-called AutomatedUserInteraction tool.

2.2.2 Custom Chromium

Obtaining a realistic JavaScript heap model requires information about objects and structure of a heap of
a real-world JavaScript application. As explained in [1] modifying the JavaScript engine of a browser is a
good opportunity to get accurate information about the JavaScript heap. We use Chromium [2] the open
source project of Google Chrome [7] to capture information about the JavaScript heap.

The Google DevTools [8] provide a functionality to generate heap snapshots. The problem is, there is no
opportunity to periodic generate such a heap snapshot. We extend the V8 and implement such a mechanism
that also stores the generated snapshots at a given directory. This mechanism works by using the Google V8
API function TakeHeapSnapshot. These snapshots contain some meta information, a nodes array, an edges
array and a strings array. The nodes array and edges array represent a directed graph, the heap. The strings
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Site User interaction

CNN Read start page news, switch to category Europe,
cnn.com read first article of Top Europe Stories.

The Economist Read start page news, switch to category
economist.com Science & technology, read first article.

ESPN Read start page news, switch to NASCAR,
espn.com click on Results and read site.

Hotmail Sign in, check in-box, send email, read an email,
hotmail.com delete it, and sign out.

Gmail Sign in, check in-box, send email, read an email,
www.gmail.com delete it, and sign out.

Bing Search Search for New York and look at
bing.com resulting images and news.

Google Search Search for New York and look at
google.com resulting images and news.

Facebook Login and post a message.
facebook.com

Google+ Login and post a message.
plus.google.com

Bing Maps Search for directions from Austin to Houston
maps.bing.com by car and walk.

Google Maps Search for directions from Austin to Houston
maps.google.com by car and walk.

amazon Search for the book Quantitative Computer Architecture,
amazon.com add to shopping cart, look at cart.

eBay Search for the book Quantitative Computer Architecture.
www.ebay.co.uk

Table 1: User interactions performed for the heap analysis of real web applications.
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array is referenced by the nodes and edges array and contains only names. The complete list of properties
of a node in the nodes array is shown in Table 3 and the properties of the edges are shown in Table 4. To
control the generation of heap snapshots, we extend the V8 with following flags:

• automatic heap snapshots

• heap snapshot interval

• heap snapshot prefix

The automatic heap snapshots flag enables the generation of snapshots in general, default it is false.
To control how frequent snapshots are generated the heap snapshot interval flag is used, default value is
64KB. Every time n KB are allocated a snapshot is taken. The third flag, heap snapshot prefix, is only
a prefix of the generated snapshot files, default value is snapshot. The produced snapshots are numbered
consecutively until the automatic heap snapshots flag is set to false or the mutator terminates. The
extension of such files is .heapsnapshot.

2.2.3 Tool for analyzing heap snapshots

The steps before describe how we capture data about a realistic JavaScript heap. Now we want to explain
how we analyze the generated snapshots.

For each real-world application, listed in Table 1, we use a sample rate of 4KB, i.e., a snapshot is created
whenever 4KB of new objects are allocated by the application. The number of generated snapshots depends
on the amount of memory which is allocated by a real-world application and the runtime of a user interaction.
When a heap snapshot is taken the garbage collector is automatically called. As a result a snapshot only
contains live objects.

However, we use a PostgreSQL [9] database, version 9.3, to analyze the snapshots. To handle the prepa-
ration of a snapshot for the database as well as the analysis we develop a tool. This tool is a Java application
that we call HeapSnapshotAnalyzer. For a realistic heap model, we are interested in the distribution of
object types, sizes and lifetimes, the number of out-going edges, and the distance from a GC root to a object.
A heap snapshot represents all live objects of the JavaScript heap and each object has a type. The complete
list of object types is shown by Table 7. An object also has a size, which represents the amount of byte
the object needs on the heap. The number of outgoing edges represents the number of references an object
holds. A snapshot contains special nodes of type synthetic which represent GC roots. These nodes has are
used to compute the root distance. The root distance represents the minimum number of edges to reach a
node from a GC root. How we compute these properties is described in Section 3.

3 Mutator Heap Analysis

In this section we describe some interesting heap properties and present our analysis results of the mutator
heap. For our analysis we only care about object types that can be allocated by a mutator. These object
types are arrays, strings, user-defined objects, code, closures, regular expressions (regexp), and numbers.
We analyze the distribution of object types, sizes and lifetimes, the number of out-going edges, and the
distance from a GC root to an object. The type information is part of a heap snapshot. The distribution
of object types is computed over all workloads, i.e., all snapshots of all real-world application. Figure 4
presents the distribution of object types as a histogram. A heap snapshot not only contains objects of a type
presented in the histogram. There are several V8 specific types like hidden classes which describe a internal
representation of object properties, and GC roots have the type synthetic. We do not care about the V8
specific types, to be platform independent. Our analysis show that the most objects are of type array, string,
or user-defined object. The dominance of arrays differs from the results in [1]. A reason for this behavior is
if it is necessary to a copy an array because it grows too much, we treat the new array logically as a new
heap object. This behavior results in an increasing number of objects and the average lifetime decreases.

Figure 5 shows the object size distribution for each type. The x-axis displays the object size in byte and
the y-axis shows the relative amount of objects larger than size x. Each object on the JavaScript heap is
identified by a unique V8 internal id which is a property of a heap snapshot. The size of a object is also a
property of a snapshot. This allows us to count objects of the same size of all snapshots of all workloads.

5



 0

 0.2

 0.4

 0.6

 0.8

 1

google plus

facebook

bing search

eBay

google search

am
azon

google m
aps

hotm
ail

espn
bing m

aps

the econom
ist

average

re
la

ti
v
e

 a
m

o
u

n
t 

o
f 

o
b

je
c
t 

ty
p

e
s

workload

array
string
object
code

closure
regexp

number

Figure 4: Histogram of the object type distribution for all workloads, confirms [1].
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Figure 5: Size distribution of real web applications, confirms [1].

As the figure shows depends the object size distribution on the object type. There are a few large object
and a lot of small objects. This behavior is similar to the allocation behavior of C programs which is shown
in [10]. The histogram also shows that there are object types with a fix size, e.g., numbers with a size of 12
byte.

As explained above it is possible to identify an object by an unique id which never changes. This fact
allows us to compute the lifetime of an object. Figure 6 illustrates the distribution of the lifetime of all
snapshots of all workloads separated by the object type. The lifetime is measured in allocated bytes that
are allocated during an object is live. As a result of the sampling rate of the snapshot generation which is
4 KB, the minimum lifetime of an object is also 4 KB. These amount of allocated byte is displayed on the
x-axis and on the y-axis is the relative amount of objects living longer than x presented. The figure shows
that the lifetime of arrays is significant smaller the lifetime of strings. What results of the fact, if a array
has to be copied, because of growing too much, a logically new array is created. This approach influences
the liveness of arrays, but from the garbage collector perspective this way of counting is okay, because the
old array also has to be deallocated.

An important property of a heap structure is the depth of a heap graph. So we compute the minimum
distance of a node to it’s GC root. A heap snapshot contains special nodes that represent GC roots, these
nodes are of the type synthetic. We use a recursive depth-first search algorithm and compute the root
distance for each node of all snapshots of all workloads and separate again by type. The x-axis of Figure 7
shows the minimum root distance and the y-axis presents the relative amount of objects with a root distance
greater than x. This figure shows that the most objects have a small root distance.
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Figure 6: Lifetime distribution of real web applications, confirms [1].
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Figure 7: GC root distance distribution of real web applications, confirms [1].
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Figure 8: Out-degree distribution of real web applications, confirms [1].
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Figure 9: In-degree distribution of real web applications, confirms [1].

Another interesting property by talking about the structure of a heap is the number of out-going edges
of a node. The number of out-going edges, the so-called out-degree, results of the fact that the snapshots
represent a directed graph. So information about the graph structure is provided by the heap snapshots.
Figure 8 shows the distribution of the out-degree separated by the object type. The out-degree is computed
for each node of each snapshot of all workloads. The x-axis of Figure 8 presents the out-degree and on the
y-axis is the relative amount of objects with an out-degree greater than x displayed. Arrays have a low
out-degree what indicates that most arrays contain primitive types. As we expect numbers also have a small
out-degree.

If we talk about the out-going edges of a node we want also to know how the number of in-going edges
looks like. The number of in-going edges, the so-called in-degree, is not an explicit property of a snapshot,
i.e., it requires some computations. In other words the in-degree represents the number of parents a node
has and this is the way how it is computed. Before inserting a snapshot into the database some preparations
are required and during these preparations the number of parents of a node is counted. Figure 9 shows
the distribution of the in-degree over all nodes of all snapshots of all workloads separated by type. On the
x-axis is the in-degree displayed and on the y-axis is the relative amount of objects with an in-degree greater
than x is shown. The figure presents a quite different behavior than Figure 8 which shows the out-degree
distribution. The behavior of the different types is more similar than it is for the out-degree. As expected
strings have a higher in-degree, because often are strings allocated once and reused.

To complete our analysis of the heap structure we have a look at strongly connected components. We
compute the strongly connected components with the Trajan’s algorithm [11]. We are interested in the size
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strongly connected components size quantity

minimum 0.286 0.782
maximum 53,729.857 285.916
average 5,316.409 11.177
quantile 25 2,304.786 3.107
quantile 50 (median) 3,082.429 6.329
quantile 75 3,629.714 14.655
quantile 90 12,199.429 36.211
quantile 95 25,979.000 49.448

Table 2: Summary of the measurements of strongly connected components.

of a strongly connected component, i.e., the number of edges that a component contains. Also the number of
strongly connected components is a relevant property of a heap graph. One snapshot represents the current
heap, since a heap is a directed graph we analyze each snapshot separate. The Table 2 shows our analysis
results of the strongly connected components. The values are the average values of all snapshots of all
workloads. If we compare the average and the median of the quantity we recognize a significant difference.
This comparison shows that there are some extreme values, which is also illustrated by the maximum. The
95% quantile shows that the most heaps contain less then 50 strongly connected components. The size of
these strongly connected components presents a similar result. There are a lot of small strongly connected
components and a few large. What should be mentioned is that 75% quantile of the size of strongly connected
components is much closer to the median than it is for the quantity.

4 System Heap Analysis

In this section we present our analysis results of the system heap. For our analysis we only care about
objects of type hidden, native, or synthetic. Objects of type hidden represent hidden classes. These objects
are generated by Google’s V8 and represent the properties of a object. GC roots has the type synthetic and
objects of type native represent other objects, i.e., DOM roots. We analyze the same properties as described
in Section 3 in the same way.

The result of the object type distribution of the system types show that about 99% of these objects are
of type hidden, this holds for all workloads. There are extreme few objects of the types synthetic and native.
One reasons is that objects of type synthetic represent GC roots and it is plausible that there are not much
such objects. Nevertheless, we care about them, because of completeness.

Figure 10 illustrates the size distribution of the system object types of all snapshots over all workloads.
The size of native and synthetic objects is always zero in a heap snapshot. This is a special behavior and
represents not the real size of these objects. Nevertheless, is Figure 10 interesting because is shows the size
distribution of hidden classes. On the x-axis of the figure the size in byte and on the y-axis the relative
amount of objects larger than size x. We see that there are only few objects of type hidden with a size larger
than 64 byte. It seems that the size of 64 byte is some kind of bound, because there is a hard back.

In Figure 11 we present the lifetime distribution over all snapshots of all workloads separated by the
object type. The x-axis shows the object lifetime in allocated KB and on the y-axis the relative amount of
objects living longer than x is displayed. We decided to use this metric to get rid of the lifetime in snapshots
representation. The sample rate of the snapshot generation is 4KB of allocated memory and this leads to
an minimum lifetime of 4KB. The lifetime of hidden classes shows a similar behavior than the lifetime of
mutator objects of type user-defined object as explained in Section 3, especially Figure 6 on page 7 illustrates
this behavior.

The root distance of nodes in a graph is an interesting parameter of the graph characteristic. If we look
at the root distance of system objects we face some special cases, because objects of type synthetic represent
GC roots that are used to compute the root distance. It is possible that an object of type synthetic also
has an root object. So the root distance of synthetic objects is always zero or one. Objects of type native
show a similar behavior because these are also used to represent DOM roots. Nevertheless, the behavior of
objects of type hidden provides interesting information. Figure 12 illustrates the root distance distribution
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Figure 10: Size distribution of real web applications.
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Figure 11: Lifetime distribution of real web applications.
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Figure 12: Root distance distribution of real web applications.
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Figure 13: Out-degree distribution of real web applications.

of system objects. The x-axis of the figure shows the minimum root distance and the y-axis the relative
amount of objects with a root distance greater than x. We conclude that hidden classes have a small root
distance and that there are only few objects with a higher root distance.

The Figure 13 presents the distribution of outgoing edges of a node, the so-called out-degree. On the
x-axis out-degree presented and on the y-axis relative amount of objects with an out-degree greater than x
is shown. This illustration shows the results computed over all snapshots of all workloads. In this figure
we see that objects of type hidden have a out-degree of less than ten. If we have a look at the native line,
we recognize that this kind of objects have a significantly higher out-degree than objects of type hidden.
Especially objects of type synthetic have a extreme high out-degree, because they represent the GC roots
and we conclude that the heap tree is very breadth.

5 System vs. Mutator

In the previous sections we described our analysis results separated in system heap and mutator heap. We
presented the differences and similarities distinguished by the type of the objects. In this section we compare
system and mutator objects and do not care about the type of the objects. As explained in Section 3 are
objects of type array, string, user-defined object, code, closure, regular expression (regexp), or number are
mutator objects. Objects of type hidden, native, or synthetic are system objects as described in Section 4.
The comparison of system an mutator illustrates the overhead produced by Google’s V8.

Figure 14 shows a histogram of the object distribution for all workloads. On the x-axis the workloads are
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Figure 14: Histogram of the object distribution for all workloads.
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Figure 15: Out-degree distribution of real web applications.

listed and on the y-axis the relative amount of objects is displayed. The histogram shows that about 25% of
the allocated objects are system objects. As explained in Section 4 most of these objects are of type hidden.
We conclude that nearly 25% of all allocated objects are used for the internal representation of objects.

The distribution of the out-degree is presented by Figure 15. On the x-axis is the out-degree shown and
on the y-axis the relative amount of objects with an out-degree greater than x is presented. Figure 15 shows
a quite different behavior of system and mutator objects. The only similarity is that there are few objects
with an out-degree higher than six. More detailed, there are less than 1% of system and less than 10%
of mutator objects with a higher out-degree than six. It is also interesting that the out-degree of mutator
objects is significantly smaller as the out-degree of system objects.

The lifetime distribution, illustrated by Figure 16, presents a similar behavior of system and mutator
objects. A reason for this is the dependency of hidden classes and user-define objects and again the fact
that most of the system objects are of the type hidden. On the x-axis of the figure the object lifetime in
allocated KB is shown and on the y-axis the relative amount of objects living longer than x is displayed.

Figure 17 presents the distribution of the root distance of all snapshots of all workloads separated in
system and mutator objects. On the x-axis the minimum root distance is shown and on the y-axis the
relative amount of objects with a root distance greater than x is shown. The behavior of the system and
mutator objects is extremely similar. We conclude that there might be a dependency of the position of
system objects and the position of mutator objects in a heap graph. A reason could be that a user-defined
objects has a reference the hidden class which represents the properties of a object.

If we compare the size distribution of system and mutator objects we recognize that system objects are
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Figure 16: Lifetime distribution of real web applications.
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Figure 17: Root distance distribution of real web applications.
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Figure 18: Size distribution of real web applications.

significantly bigger. This behavior is illustrated by Figure 18, which shows on the x-axis the size in byte and
on the y-axis relative amount of objects larger than size x.

6 Conclusions

We presented our analysis of popular and JavaScript-intensive real-world web applications to obtain real-
istic distributions of object properties and heap structure properties. Our analysis support developers by
implementing realistic JavaScript benchmarking suites which are able to simulate a realistic JavaScript heap
behavior. Such benchmarks will help to improve performance of memory management systems of JavaScript
virtual machines. Furthermore, this may improve the performance of a JavaScript virtual machine in gen-
eral.
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A Appendix

This section presents some additional tables about the generated heap snapshots.

Field name Description

type See Table 7
name A string which names the object. If the object is

an mutator variable this name is the same as in
the mutator (reference to strings array)

id A unique id given by the virtual machine (V8)
selfsize This is the size of the object in byte.
edgecount Number of reference which leaves the object.

Table 3: Heap snapshot node fields
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Field name Description

type See Table 6
name or index A string which names the edge. (reference to strings array)
to node It is the pointer to the child node. (reference to nodes array)

Table 4: Heap snapshot edge fields

Name Description

number of nodes Each snapshot contains a field called node count.
The node count field is equal with number of nodes and
shows how many nodes the heap currently contains. The nodes count

field is also an property of the table snapshots and exists once
per snapshot.

number of edges This is the same as number of nodes only for edges. Each snapshot
contains a field edge count. The edge count field is
equal with number of edges and shows how many edges the heap currently
contains. The edge count field is also an property of the table
snapshots and exists once per snapshot.

number of leafs The number of leaves is computed as followed: scan all nodes of a
snapshot and count those without children. Each node has a property called
edge count this value is different from the edge count

of a snapshot, only the name is the same. A node has no children if the
edge count is zero, because the edge count field
contains the number of leaving edges. The edge count field it
an property of the nodes table.

outdegree As explained before each node has a property edge count which
shows the number of leaving edges. The number of leaving edges is the same
as the outdegree of a node, so it follows that edge count is also
equal with the outdegree of a node. By using some aggregations of SQL it is
easy to compute the maximum, minimum and average number of leaving edges.
The edge count field it an property of the nodes table.

indegree The indgeree of a node is computed before inserting the data into
the database. For each node in the snapshot is counted how many other nodes
have a reference to this.

selfsize The selfsize is a property of a node in the snapshot and is
computed by the V8 snapshotting mechanism. It shows the size of a node in
byte.

rootdistance The rootdistance is an property of the node table and is
computed for each node before it is inserted in the database.
The rootdistance is the shortest path from any root to a node.

strongly To find strongly connected components in the heap graph the Tarjan’s
connected strongly connected components algorithm[11] is used.
components

Table 5: Heap snapshot metrics
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Name Description

context A variable from a function context
element An element of an array
property A named object property
internal A link that can’t be accessed from JS, thus,

its name isn’t a real property name (e.g. parts of a ConsString)
hidden A link that is needed for proper sizes calculation,

but may be hidden from user
shortcut A link that must not be followed during sizes calculation
weak A weak reference (ignored by the GC)

Table 6: Heap snapshot edge types

Name Description

hidden Hidden node, may be filtered when shown to user
array An array of elements
string A string
object A JS object (except for arrays and strings)
code Compiled code
closure Function closure
regexp A regular expression
number Number stored in the heap
native Native object
synthetic Synthetic object, usually used for grouping snapshot items together
concatenated string Concatenated string (a pair of pointers to strings)
sliced string Sliced string (a fragment of another string)

Table 7: Heap snapshot node types
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