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Abstract

The latency of accessing data stored in the main memory is a known problem
in computer systems. We are interested in finding metrics that characterize the
performance of a program for a given cache. We analyze the characteristic of load
and store instructions, called the memory access trace, of two well known benchmark
suites, namely SPEC 2006 and V8. For our analysis about the potential performance
improvement in terms of memory access performance and memory usage we modify
the addresses used by a memory access trace. Our analysis illustrates that for
some benchmarks we are able to improve the memory usage and the memory access
performance by a factor of at least two. Nonetheless, the chosen metrics illustrate
tendencies for improvement rather than unique characteristics.
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CHAPTER 1
Introduction

Caches are based on two major observations: When data is accessed once, it is
likely (1) that nearby data is accessed in the near future (spatial locality [7]) and (2)
that the same data is accessed again in the near future (temporal locality [7]). To
address spatial locality so-called cache lines have been introduced. A cache line is
the smallest unit of data that can be loaded from the main memory. All cache lines
of a cache are of the same size and dependent on the cache line size, the values of
multiple addresses fit in one cache line. A program accesses the data stored in the
main memory via addresses. An address is a unique identifier for a certain amount
of data, e.g. 8 byte are a common amount of data accessible by one address [12].
There are two different types of memory accesses, reading and modifying. Reading
data is realized by executing a load instruction. A load instruction reads the data of
an address and stores the read value into one of the central processing unit (CPU)s
registers for further computations. At first it is tried to read the data from the
cache. If the data of the requested address is in the cache, it is read from there.
Otherwise the data has to be read from the main memory. Data is loaded from
the main memory, stored in the cache, and finally loaded into one of the CPUs
registers. To modify data, a store instruction has to be executed. If the data to
modify is already in the cache, the main memory is not accessed. Otherwise, the
data has to be loaded from the main memory into the cache first. Independent of
the access type, if the accessed data is available in the cache, this is called a cache
hit, otherwise when the data is not in the cache this is called a cache miss. Since a
cache is limited in space and typically the data required for the execution, which is
called the working set [4], is larger then the cache size, eventually the cache will run
out of space. Whenever the cache is full and an address is accessed that is not in
the cache, it is necessary to free up space. For this reason every cache implements
an eviction policy to decide on an eviction candidate. The eviction candidate is
written back to the main memory to make space for the requested data, then it
is evicted. The choice of the eviction policy aims to satisfy temporal locality, e.g.
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2 CHAPTER 1. INTRODUCTION

a common eviction policy is to evict the least recently used address. The fact
that cached data is grouped, such a group of data is called cache lines, influences
the cache performance significantly. Assume iterating over an array. In such a
case the performance might be excellent, because these are perfect conditions for
spatial locality and temporal locality. However, assume iterating over a dynamically
allocated linked list. Compared to an array it is not ensured that the list elements
are stored contiguous in memory. It is more likely that elements are distributed
across the whole address space. In a worst case scenario each iteration forces a
cache miss. This issue is a consequence of the memory layout generated by the
allocator through dynamic allocations.

We are interested in the following problem: given a trace of load and store
instructions, can we find metrics that characterize the trace performance for a given
cache and implement an execution engine for computing their quantities?

For the purpose of this work we focus on the sequence of load and store instruc-
tions of a program, the so-called memory access trace (short trace). We analyze
traces of the SPEC 2006 benchmarks and the V8 benchmarks. For each trace of a
benchmark the following four metrics are computed: (1) the accesses represent the
number of accesses on an address, (2) the access distance is defined as the number
of accesses on other addresses between two accesses on the same address, (3) the
liveness interval length represents the timespan an address is in use, and (4) the
overlapping liveness is defined as the number of overlapping liveness intervals at a
certain point of the execution. In this work each store instruction indicates the be-
ginning of a liveness interval. A liveness interval ends with the last load instruction
before the next store instruction, i.e. an address might consist of multiple liveness
intervals. First, our analysis observes the sequence of load and store instructions of
a benchmark. Next, the observed trace is analyzed according to the four metrics,
accesses, access distance, liveness interval length, and overlapping liveness. After
the metrics have been saved, the procedure for the performance analysis starts. The
performance analysis uses different allocators to modify the addresses used by the
trace. The modification of the used addresses is called trace transformation. Each
transformed trace is executed on four simulated caches. The simulated caches dif-
fer in the applied eviction policy and their information about the executed trace.
During the execution, the number of main memory accesses, the number of cache
misses, and cache hits are counted to determine the performance of a trace for a
certain simulated cache.

Our conjecture is that the four metrics accesses, access distance, liveness interval
length, and Overlapping Liveness characterize the performance of a program. Fur-
thermore, we are convinced that caches may be more effective if memory is reused
quickly and independently of where the data is located.



CHAPTER 2
Theoretical Foundations

2.1 Hardware Model

This section deals with the applied hardware model. The model used is reduced to
the minimal required core components of a modern computer system. It consists of
three components as illustrated in Figure 2.1. The three components are the central
processing unit, a cache, and the main memory.

CPU Cache Main Memory

Cache
Store

Cache
Load

Memory
Store

Memory
Load

Figure 2.1: Hardware Model

2.1.1 Central Processing Unit

The CPU is the heart of a computer system. The purpose of a CPU is to process and
execute a given program. A program consists of a sequence of instructions which
operate on data. It is processed sequentially, that is, instruction by instruction.
An instruction is a command with the purpose to perform a specific action, e.g.
to add two numbers or to modify data. Data is the information required by a
program that is necessary for its execution, e.g. values for computations. The CPU
consists of a limited number of so-called registers. A register is an extremely small
and extremely fast memory unit which allows the CPU to execute computations.
Registers are the only memory unit where the CPU is able to apply arithmetic
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4 CHAPTER 2. THEORETICAL FOUNDATIONS

operations. The actual size of a single register and the number of registers available
for computations depend on the architecture of the hardware.

For the purpose of this work, only instructions reading or writing data are taken
into account. In order to read data, a load instruction is required; in order to write
data, a store instructions is applied. These two instructions access the data of a
program stored at the main memory, e.g. for the purpose of a calculation it might
be necessary to get some data from the main memory and save its result at the
main memory for later usage. Such data can be accessed by executing a load or
store instruction on main memory. However, there are several more instructions
available on modern computer systems, e.g. arithmetical operations.

2.1.2 Main Memory

The main memory is a storage containing all data required to execute a program.
In general, the CPU has to load data from the main memory and store data in the
main memory to process a program. Furthermore, even the program itself is stored
at the main memory during its execution. Each instruction of a program has to be
loaded before the CPU is able to execute it. In case of a load instruction, the CPU
first loads the instruction itself. Then the CPU interprets the instruction to find
out what to do, e.g. execute a load of data. Last the CPU executes the instruction,
e.g. it loads the actually required data into some of the available registers.

The main memory is structured in equally sized chunks of memory, that are for
example the size of 8 byte. These are then called a word. Each of these memory
chunks can be accessed by the CPU via a unique identifier, its physical address. To
simplify a programmers life and make programs easier portable, virtual addresses
have been introduced. A virtual address (short address) maps a physical address.
Each program on a computer is given its own virtual address space which starts at
address 0; this is an important assumption. In reality the first physical address of
a program is very unlikely to be 0. This mapping of physical addresses to virtual
addresses which always start at address 0 makes programs easier portable. For the
purpose of this work, it is important to keep in mind that load and store instruction
operate on addresses, e.g. load &address where &address represents the address
of the data that is to be loaded.

2.1.3 Cache

A cache is a small high-speed memory which temporarily holds data of the addresses
used by the currently processed program. Smith describes the concept of caches in
[14].

Caches are based on two major observations, namely Temporal locality and Spa-
tial locality. Temporal locality means that if data is accessed it is likely that the
same data is accessed again in the near future. Spatial locality means that if data
is accessed, it is likely that other data nearby is also accessed in the near future.
Speaking about accessing an address is equivalent with accessing data stored at an
address in the main memory. The same accounts for cached addresses. For the CPU
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a cache is invisible. Regardless of whether or there is a cache or not the CPU always
just wants to access a certain address. If there is cache present, it simply takes less
time to load the value of an address into the CPUs register. This is because caches
are high-speed memory units.

A cache hit occurs whenever the CPU wants to access an address which is
already in the cache. Then no main memory access is required. The data is directly
accessed via cache.

A cache miss occurs whenever the CPU accesses an address that is not currently
in the cache. In such a situation it is required to load the data of the requested
address from the main memory into the cache. Before the value stored at this
address, it is loaded into one of the registers. Such an operation is expensive as
explained in Section 2.4.

The cache policy decides which address has to be evicted, i.e., which address
has to be written back into the main memory in order to make free space available.
Since caches are limited in the number of addresses that can be temporarily stored,
a cache will eventually run out of space. In the case that the cache is full and
a cache miss occurs, it is required to make space available to load the requested
address. There are different algorithms trying to make an appropriate chose of the
address, that is to be evicted. For more details see Section 4.3

2.2 Memory Access Trace

The memory access trace (trace) represents all memory accesses for a given program.
More precisely, the trace is a sequence of load and store instructions observed by
analyzing a given program. Furthermore, for the purpose of this work it does not
matter which value is stored at a certain address. Therefore, the stored values are
all dropped. This results in a sequence of tuples consisting of the instruction type,
which is either load or store, and an address. Figure 2.6 shows an example of a trace
where addresses are annotated with & known from programming languages like C.

Figure 2.2 shows a simple C program which sums up three numbers. First, all
used variables are declared. Afterwards, the variables sum, x, and y are initialized
with the values 0, 1, and 2. Followed by the first computation, the value of x is
added to sums value and stored in sum. Next, the variable z is initialized with value
3. Then, sum is increased by the value of y. Finally, the computation is completed
by adding the value of z to sum.

Figure 2.3 shows a snippet of assembly code generated by compiling the code of
Figure 2.2. For compilation GCC 4.8.5 on Ubuntu 16.04 for AMD OpteronTMProcessor
6376 with x86 64 Architecture was used. Since the declaration of the variables is
only important for the compiler, no assembly code is generated for: int sum, x,

y, z;. Therefore, the first line of assembly code shown in Figure 2.3 represents the
code generated for the C code sum = 0;. However, the compiler has not generated
a store operation, instead the following code appears movl $0, -16(%rbp).

This assembly instruction consists of three parts. The first part shows the
instruction that should be executed. In the example above movl represents this
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void main ( )
{

int sum , x , y , z ;
sum = 0 ;
x = 1 ;
y = 2 ;
sum = sum + x ;
z = 3 ;
sum = sum + y ;
sum = sum + z ;

}

Figure 2.2: C code example of summing three numbers.

instruction. movl moves a long value into a register. A long value is on the x86 64
architecture the size of 32 bit. The second part represents the value that should
be moved. In the example from above a constant value is moved. The fact that
0 is a constant value is indicated by the $ character. The third part represents
the address to which the value should be moved to. In the example from above
the target address is -16(%rbp). In this case, rbp is a register indicated by the %

character. Further, %rbp is a so-called general-purpose register of size 64 bit. By
now it is enough to know that this register holds a memory address which is used
as base to compute the actual target address. -16 is the offset used to compute the
actual target address. Figure 2.3 only consists of two different types of instructions.
The movl instruction is explained above. The other operation is used as follows
addl %eax -16(%rbp). The meaning of this instruction is to add the value stored
at -16(%rbp) to the value currently stored at the register %eax and store the result
at %eax. As indicated by the l character at the and of the instruction name, this
instruction operates on values of the size of 32 bit.

movl $0 , −16(%rbp )
movl $1 , −12(%rbp )
movl $2 , −8(%rbp )
movl −12(%rbp ) , %eax
addl %eax , −16(%rbp )
movl $3 , −4(%rbp )
movl −8(%rbp ) , %eax
addl %eax , −16(%rbp )
movl −4(%rbp ) , %eax
addl %eax , −16(%rbp )

Figure 2.3: Assembly code snippet generated by compiling the code of Figure 2.2
with GCC 4.8.5 on Ubuntu 16.04.5 for AMD OpteronTM Processor 6376 with x86 64
Architecture.



2.2. MEMORY ACCESS TRACE 7

Figure 2.3 shows the assembly code of generated for the C code of Figure 2.2.
Obviously, the first three assembly instructions correlate to the three assignments
of the C code. It might be unexpected that the movl instruction is used instead of
a store instruction. However, moving a value to a certain location is semantically
equivalent to a store. Nevertheless, there are three addresses used, each with an
offset. These offsets increase exactly by the same size: four (-16, -12, and -8). The
operation movl operates on 32 bit which are 4 byte. Hence, the variables sum, x,
and y are stored contiguously in memory.

sum = 0 ; | movl $0 , −16(%rbp )
x = 1 ; | movl $1 , −12(%rbp )
y = 2 ; | movl $2 , −8(%rbp )

Figure 2.4: Assignments: C code (left) and generated assembly code (right).

Different to assignments an addition leads to two lines of assembly code as
illustrated by Figure 2.5. The first instruction loads the value of x (stored at address
-12(%rbp)) into register %eax. Since the CPU can apply arithmetic operations
exclusively on registers, it is required to load the value of x into a register before
computing the sum. Again the movl instruction is used to load the data. As before,
the semantics of the movl is equivalent to a load instruction. The second instruction
generated is the actual computation. The generated addl instruction operates on
32 bit, as well as the movl instruction. Indicated by the last letter of the instruction
name, l. addl takes the value store in the register %eax and adds the value store
at the address -16(%rbp). The result of this computation is stored in the %eax

register.

sum = sum + x ; | movl −12(%rbp ) , %eax
| addl %eax , −16(%rbp )

Figure 2.5: Addition: C code (left) and generated assembly code (right).

After the addition, the assignment of variable z follows. This assignment works
exactly the same as discussed at the beginning of this section. The same accounts
for the remaining two additions (sum = sum + y; and sum = sum + z;). The next
step is to take look at the trace used in this work.

Figure 2.6 presents the trace observed by the example of Figure 2.2. To illustrate
that the trace operates on the addresses the C like character & is used as prefix of
an address. All information expects this kind of access and the accessed address is
dropped.

Figure 2.7 compares the assignment of the C code with the generated assembly
code and the resulting trace of these instructions. Assignments are translated into
stores in the trace. In order to facilitate the procedure, the stored value is dropped,
so that only the accessed address remains in the trace.
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s t o r e &sum
s t o r e &x
s t o r e &y
load &sum
load &x
s t o r e &sum
s t o r e &z
load &sum
load &y
s t o r e &sum
load &sum
load &z
s t o r e &sum

Figure 2.6: Memory access trace of the assembly code shown in Figure 2.3.

sum = 0 ; | movl $0 , −16(%rbp ) | s t o r e &sum
x = 1 ; | movl $1 , −12(%rbp ) | s t o r e &x
y = 2 ; | movl $2 , −8(%rbp ) | s t o r e &y

Figure 2.7: Assignments: C code (left), generated assembly code (middle), and
trace (right).

Figure 2.8 presents the trace for the addition sum = sum + x;. The move in-
struction movl -12(%rbp), %eax loads the value of x into a register, which trans-
lates as expected into a load instruction in the trace. The addition itself translates
into two instructions within the trace.

sum = sum + x ; | movl −12(%rbp ) , %eax | load &x
| addl %eax , −16(%rbp ) | load &sum

| s t o r e &sum

Figure 2.8: Addition: C code (left), generated assembly code (middle), and trace
(right).

An striking observation is that there are no arithmetic operations in the trace,
which makes sense, since this representation of a program shows all the interaction
with the main memory. However, this does not mean that while translating the
assembly code to its trace, arithmetic operations could be skipped. Nevertheless,
not only the move instructions could lead to a main memory access. Figure 2.9
shows a main memory access that is achieved via reading the value stored at address
-16(%rbp) for the computation. Such an instruction leads to a load within the
trace. Since the result of a computation is saved somewhere there is also a store

observable in trace.
This section showed how the trace of a program is observed. Hence, the assembly
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addl %eax , −16(%rbp )

Figure 2.9: Addition assembly code.

code of a simple C program which sums three numbers is discussed and finally the
correlating trace is presented. The trace of a program is a sequence of tuples. Each
of them holds the type of access which is either load or store and the accessed
address. An address is prefixed with an &.

2.3 Liveness

This section introduces the concept of liveness of an address. Roughly speaking,
the liveness of an address describes the timespan in which the address is used by
a program. In general, the liveness of an address begins with its allocation and
ends with its deallocation as illustrated by Figure 2.10. Yet, Aigner and Kirsch
showed in their work [1] that the general understanding of liveness offers potential
for improvement.

In their work, they introduced the term of deallocation delay, describing the
timespan from the last access on an object until its deallocation. This is based
on the observation that objects often live longer than necessary, because of this
deallocation delay, which is a waste of resources, especially memory.

Remark. Note that in the work [1] the liveness term is defined at object level. In
this work we are exclusively focusing on address level.

However, in this work liveness is defined differently. First of all, liveness is
defined on address level, since the whole work is operating on addresses rather
than objects or data structures. Further, an address does not consist of the one
liveness. Rather, it consists of multiple timespans of liveness. In the timespan
beginning with allocating an address and deallocating it, there are periods in which
the address is used heavily and there are periods where the address is not used at
all. These periods of usage are called liveness intervals. How these liveness intervals
are defined is presented by Theorem 2.1. The basic idea is that each store operation
introduces a new liveness intervals. This is similar to the initialization of an address.

Definition 2.1 (Liveness interval).
Whenever there is a store on an address a new liveness interval begins. A liveness
interval ends with the last access at the address before the next store instruction
occurs. A liveness interval also ends with the absolute last access on the address.

Remark. As an implication of Definition 2.1 a single address might have multi-
ple liveness intervals. Figure 2.12 presents the liveness interval for the address of
variable sum.

Figure 2.12 illustrates the liveness intervals of the C code example presented in
Figure 2.2, which shows the instruction number on the left side and the instruction
itself on the right side. On top of the figure the addresses used by the program are
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store loads load store loads final load

deallocation
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Figure 2.10: Classical liveness

time

allocation

store loads final load store loads final load

deallocation

liveness interval dead liveness interval

Figure 2.11: Liveness intervals

listed. The core of the figure illustrates the liveness intervals of the addresses. Each
line represents a single liveness interval. A liveness interval begins at the lower
instruction number and ends at the higher one. The liveness intervals are quite
obvious for the addresses &x, &y, and &z. According to Definition 2.1, a liveness
interval always begins with a store instruction. The instructions 2, 3, and 7 indicate
the beginnings of the liveness intervals for the three addresses &x, &y, and &z. The
endings are indicated by load instructions at the instruction numbers 5, 9, and 12.
None of the addresses are accessed after these lines again, e.g. &x which is not
used anymore after instruction number 5. The address &sum presents a much more
interesting case as it consists of four liveness intervals. The first liveness interval
of &sum begins at instruction number 1. This is when &sum is initialized. Followed
by the initializations of &x and &y before &sum is accessed again. The load at
instruction number 4 indicates the end of &sums first liveness interval, because the
next access is a store. At instruction number 6 the second liveness interval begins.
The other liveness intervals follow the same pattern. Note that also the store at
instruction number 13 yields a liveness interval, even if it is the shortest possible.
At the instruction numbers 5, 9, and 12 the address &sum is dead according to the
applied definition of liveness intervals, see Figure 2.11. It would allow to reuse the
address of &sum for other purposes.

This section presented the definition of liveness and especially of liveness inter-
vals. The definition of liveness intervals is one of the most central components of
this work. It is the base for the trace transformations described in Section 2.6.

Mario Preishuber


Mario Preishuber
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store &sum
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Figure 2.12: Liveness intervals of the C code example shown in Figure 2.2.

2.4 Performance

This section presents how the performance of a trace is computed. The performance
of a trace is the most significant criteria of its quality. In general traces with better
performance use the memory is available in a more efficient way than others. The
performance is independent of the number of instructions that a trace consists of.
The only important criteria is the number of memory accesses. As Figure 2.1 shows
there are different kinds of memory access. Depending if the accessed address is in
the cache or not, the time required to load the value of a address into a register
varies. Cached data can be accessed much faster than data which has to be loaded
from the main memory. The latency to load data into a register is measured in
CPU cycles. CPU cycles are a common metric to measure durations at hardware
level.
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In our system performance is expressed in cycles per access (CPA). Indeed
performance is not directly measured. As Equation (2.4.1) illustrates, it is computed
according to the number of memory accesses that are raised during execution. CPA
describes the average number of CPU cycles per memory access. A memory access
is equivalent to an instruction of the trace.

We proceed as follows. After the trace of a program has been generated its
performance is analyzed by applying the trace on a simulated cache and counting
the different kinds of memory accesses. At the end of the execution the performance
is computed as illustrated by Equation (2.4.1).

CPA(T,C) =
Sum of cycles(T,C)

Sum of accesses(T )
(2.4.1)

T represents the trace of the analyzed program. C represents the applied cache;
the different caches are explained in Section 4.3.

Sum of cycles(T, C) represents the sum of all memory accesses and each one
weighted according to the costs of its type. The costs for a memory access depends
on the latency of the memory unit that is accessed. This is why cache accesses are
cheaper than accessing the main memory. The sum of accesses(T) represents the
total number of load and store instructions executed by the trace T .

Table 2.1 shows the costs for the different types of memory accesses. These
numbers are taken from literature [5], [3]. The actual values are not that important
than the relation of the costs.

Memory Access Type Cost in Cycles

Cache load 1
Cache store 1
Memory load 5
Memory store 5

Table 2.1: Cost for memory access types

This section presents our definition of performance and how the performance of
a trace is computed. For this procedure the memory accesses of a trace are recored
and finally used for computation.

2.5 Metrics

This section presents the metrics chosen to characterize a trace. The characteristic
of a trace consists of the four metrics accesses, access distance, overlapping liveness,
and liveness interval length. These are used to reason about the resulting perfor-
mance of a trace and further to compare a trace with other traces. The metrics
presented by this section are all applied after trace transformation. Hence, these
operate on variables rather than directly on addresses. Nevertheless, variables could
easily be mapped to addresses. Furthermore, for all four metrics the same statis-
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tical parameters are computed: minimum, maximum, average, 5% percentile, 25%
percentile, 50% percentile, 75% percentile, and 95% percentile.

Remark. Statical metrics

� The minimum is the numerical smallest value of all samples.

� The maximum is the numerical largest value of all samples.

� The average is the arithmetic mean of all samples. It is computed by dividing
the sum of all samples by the number of samples.

� The percentile is the value below which a given percentage of all samples fall,
i.e., the 25% percentile represents the value for which holds that 25% of all
samples are smaller than this value.

1 : load A
2 : load B
3 : s t o r e A

Figure 2.13: Tiny trace example. Note: this trace has been transformed, i.e., there
is no & so A and B represent variables not addresses. On the left the instruction
number is shown and on the right the correlating instruction is presented.

2.5.1 Accesses

The metric called accesses is defined as the number of accesses on a certain variable.
For this reason the number of accesses on each variable are counted, regardless of
the access type. Applying this metric on the tiny example presented in Figure 2.13,
results in the following list of samples (1, 2). Variable A is accessed twice and
variable B is accessed only once.

2.5.2 Access Distance

The access distance metric shows the distance between two sequential accesses on
the same variable. For example, if there is only one variable accessed, the access
distance of such a trace is 0. Assume a trace that accesses two variables alternating
as shown by Figure 2.13, then the access distance of A is 2. It is computed by
subtracting the instruction number of the current access and the instruction number
of the previous access on a certain variable. For example, the access distance of
variable A is computed by 3− 1 = 2, same of B (2− 2 = 0). Applying this metric
on the tiny example presented in Figure 2.13, results in the following list of samples
(0, 2). Between the load of variable A and the store on it there is only one other
instruction, that the reason why there is 2 in the list.
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2.5.3 Overlapping Liveness

The overlapping liveness metric is defined as the number of overlapping liveness
intervals at a certain point of the execution. The set of live variables is called
working set. The term working set has been introduced by the work [4]. This
metric shows how the working set of a traces grows and shrinks. For this reason at
each instruction the currently live variables are recorded. Applying this metric on
the tiny example presented in Figure 2.13, results in the following list of samples
(1, 1, 2). At instruction number 1 and 3 only one variable is live A. At instruction
number 2 there are two variables live respectively A, and B.

2.5.4 Liveness Interval Length

The liveness interval length metric is defined as the different lengths of liveness
intervals. In general, a variable is used for a specific purpose that yields the variable
to be live a certain timespan. There are variables that are used for a short period
and others are live for longer. If a variable is only accessed once, the liveness interval
length is 0. The liveness interval length is computed by subtracting the instruction
number of the first access of the liveness interval from the instruction number of
its last access. Applying this metric on the tiny example presented in Figure 2.13,
results in the following list of samples (0, 2). As explained above, if a variable is
only accessed once, the liveness interval length is 0, this is the case with B. The
length of the liveness interval of variable A is represented by the second value of
the list, 2.

2.6 Trace Transformation

Section 2.2 illustrated how to observe the trace of a program. Section 2.3 describes
our definition of liveness and introduces liveness intervals. This section shows how
to use this information to transform the trace T of a program. The aim is to trans-
form a trace T into a trace T ′ that is semantically equivalent to T , but offers better
performance. The performance of a trace is determined as presented in Section 2.4.
The transformation of a trace does not effect the sequence of load and store in-
structions. Nevertheless, the addresses used by the trace are replaced according to
a given algorithm. The algorithms available are described below. We distinguish
between the originally used addresses and the addresses used after transformation;
the latter ones are called variables. The different naming simplifies talking about
traces. Each time we talk about an address, it refers to the trace observed from
the binary. Talking about variables indicates that the trace has been transformed
already.

2.6.1 Identity Trace

The identity trace reproduces the original trace. For transformation each unique ad-
dress of a trace is replaced by an unique variable. Based on the trace (see Figure 2.6)
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observed from the C code, illustrated in Figure 2.2, the addresses are replaced by
variables, as shown in Figure 2.14. Basically, &sum becomes A, &x becomes B, &y
becomes C, and &z becomes D. The x-axis and y-axis are switched, because it
requires less space vertically. However, note that liveness intervals of the variables
shown in Figure 2.14 are exactly the same as those of the addresses illustrated in
Figure 2.12.

A

B

C

D

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2.14: Liveness intervals of the C code example shown in Figure 2.2.

In this work two different kinds of trace transformations are applied, respectively
expanding the trace and collapsing the trace.

2.6.2 Single Assignment Trace

The single assignment trace expands the original trace, i.e., it uses more variables
than the original trace addresses. For expanding a trace we decided to use a single
assignment form. More specific, each liveness interval of a trace is assigned to a
variable. Further, a variable is never assigned to a liveness interval more often than
exactly once. Figure 2.15 presents the single assignment trace of Figure 2.6. It is
not surprising that the number of variables required increases when applying such
an approach. In detail, the four liveness intervals of address &sum are now assigned
to the variables A, D, F , and G. In this example, those variables are assigned in
alphabetical order according to the beginning of an liveness interval. This is the
reason why the variables used to map the liveness intervals of address &sum are
not contiguous. For this approach iterate through the trace and each time a store
instruction occurs, assign the next free variable. The implementation details are
explained in Section 4.2.2.
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A
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D
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G

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2.15: Liveness intervals of the C code example shown in Figure 2.2 in single
assignment form.

2.6.3 Compact Trace

For collapsing a trace we use a compact form. Each liveness interval of a trace is
assigned to a variable, but now variables are reused. If the liveness interval ends,
the variable is added to a free list. A free list is a list of variables that have been
used before but their liveness intervals have ended. Hence, these variables can be
used again for another liveness interval. The procedure is as follows: Before using
a new variable, the free list is checked; if there are variables available at the free
list, these are used. Otherwise a new variable is assigned. The implementation
details are explained in Section 4.2.3. There are various data structures that can
be used to implement a free. The selected data structure influences the semantic
of the free list. In this work three variants are investigated, (1) stack semantic, (2)
queue semantic, and (3) set semantic. The set semantic is thought to represent a
random selection of a free variable. Figure 2.16 illustrates the compaction of the
trace shown in Figure 2.6. For this example a free list with stack semantic is used.
As expected, this approach requires less variables. The liveness intervals of &sum

remain the same with variable A. Furthermore, the addresses &x and &z now share
variable B.

Remark. Note that only by coexistent the liveness intervals of address &sum are
assigned to the same variable A. In general, it depends on the semantics of the free
list and the currently free variables which variable a liveness interval is assigned to.

This section presents two different kinds of trace transformations, single assign-
ment and compaction. Single assignment potentially increases the number of used
variables and compaction potentially decreases the number of used variables.



2.7. SUMMARIZING EXAMPLE 17

A

B

C

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2.16: Liveness intervals of the C code example shown in Figure 2.2 in com-
pacted form.

2.7 Summarizing Example

Lets take a look at the performance of the three traces from above. Assume a least
recently used (LRU) cache with 2 cache lines, where each cache line fits exactly one
variable. For details on LRU caches see Section 4.3.2. As a breath description of
the applied cache, imagine as long as there is a free cache line within the cache, this
one is used. In case there is no more free cache line it is required to evict one of the
used cache lines. To make space, the least recently used cache line is evicted.

If a variable is accessed that is already in the cache, a cheap cache access can
be executed, either a load or store instruction. Otherwise, the main memory has to
be accessed that is much more expensive The costs of the different kinds of accesses
are presented in Table 2.1. For the following performance computation we assume
a simple optimization: The first store instruction on a variable can be executed
directly into the cache. Further, assume that in case of an eviction the data of a
variable has to be stored in the main memory, regardless if the variable is live or
dead.

2.7.1 Identity Trace

Figure 2.17 shows the annotated liveness intervals of the identity trace illustrated in
Figure 2.14. According to the assumptions from above, every beginning of a liveness
interval is annotated with a cache store. Since the assumed cache fits exactly two
variables, the first eviction occurs when writing variable C at instruction number
3. According to the eviction policy of the applied LRU cache variable A is evicted.
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The memory store of variable A is annotated with a filled red circle. Unfortunately,
variable A is accessed at the next instruction. For this reason it has to be loaded
from the main memory again, but before B has to be stored in in the main memory
to make space in the cache for A. The same procedure is repeated for the variables
B and C at instruction number 5. At instruction number 6 we are able to load
a variable directly from cache for the first time. Nevertheless, there are two more
evictions required to finish the execution of this trace. One at instruction number
7, variable B is evicted to make space for variable D. An interesting aspect at
this instruction is that the liveness interval of variable B ended two instructions
before, hence B is dead. Furthermore, B is not needed anymore for the following
instructions. In general, this information is not available, this is the reason why
there is a memory store. However, if a system knows about the liveness intervals
of its variables it might decide to overwrite the value of B with the value of D and
avoid the memory store. The last eviction appears at instruction number 9, where
variable C is accessed for the last time. Variable A is accessed several time without
any interaction with the main memory, because each time it is accessed, it is in the
cache.

A

B

C

D

cache load cache store memory load memory store

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2.17: Liveness intervals of the C code example shown in Figure 2.2. An-
notated by the different kinds of memory accesses. Assuming a LRU cache with 2
cache lines, each cache line fits exactly one variable.

The metrics of this trace are illustrated in Figure 2.17. The accesses metric is
observed by recording the number of accesses for each variable. In this example,
the list of samples holds four values one for each variable. The number of accesses
on variable A is 7; all other variables are accessed twice. The resulting sorted list
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of samples looks as follows (2, 2, 2, 7). The access distance presents a kind of the
access frequency on a variable. Depending on the number of accesses, the list of
access distances could be significantly larger than the number of used variables.
In this case the sorted list of samples looks as follows (0, 1, 2, 2, 2, 2, 3, 3, 5, 6). For
variable A there are multiple access distances (from left to write) 3, 2, 2, 2, 1, and
0. The overlapping liveness metrics shows how many variables are used at a certain
instruction number. The list of samples is computed by counting the overlapping
liveness intervals for each instruction number. As a result the size of the samples list
depends on the number of instructions rather than on the number of used variables.
In the case of the current example the samples are (1, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 1, 1).
For the purpose of better understanding the list is not sorted. Instead it is ordered
according to the correlating instruction number, i.e., the first entry represents the
number of overlapping liveness intervals at instruction number 1. The fourth metric
is the liveness interval length. The number of used variables and the number of
accesses define the number of samples for this metric. The number of accesses on a
variable are significant, because these define the liveness intervals. For this example
the list of samples looks as follows (0, 1, 2, 3, 3, 5, 6). For variable A there are four
entries in the list 0, 1, 2, and 3. The resulting metrics are presented in Table 2.2.

Metric Min. Max. Avg.
Percentile

5% 25% 50% 75% 95%

Accesses 2.00 7.00 3.25 2.00 2.00 2.00 3.25 6.25
Access Distance 0.00 6.00 2.60 0.45 2.00 2.00 3.00 5.55
Overlapping Liveness 1.00 3.00 2.08 1.00 2.00 2.00 3.00 3.00
Liveness Interval Length 0.00 6.00 2.86 0.30 1.50 3.00 4.00 5.69

Table 2.2: Metrics of the identity trace illustrated in Figure 2.17 (values are
rounded).

To compute the performance of Equation (2.7.1) the different kinds of memory
accesses have to be counted and weighted as illustrated by Equation (2.7.1). Ac-
cording to the annotations of Figure 2.17 there are 2 cache load, 7 cache stores, 4
memory loads, and 5 memory stores. The result of this equation indicates that 4.15
CPU cycles are required in average to process one instruction of the trace.

CPA(Toriginal, CLRU ) =
1 ∗ (2 + 7) + 5 ∗ (4 + 5)

13
= 4.15 (2.7.1)

2.7.2 Single Assignment Trace

Figure 2.18 shows the annotated liveness intervals of the single assignment trace
of Figure 2.15. Unexpectedly, the number of cache stores increases according to
the number of variables used. The combination of using more variables and the
assumption that the first access on a variable yields a cache store, increases the
number of cache stores executed. Further, using more variables seems to reduce
the number of cache loads at least for this example. In total, the number of cache
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Figure 2.18: Liveness intervals of the C code example shown in Figure 2.2 in single
assignment form. Annotated by the different kinds of memory accesses. Assuming
a LRU cache with 2 cache lines, each cache line fits exactly one variable.

accesses is the same as for the identity trace, but the distribution differs. Taking a
look at the main memory accesses, we observe an increase in the number of memory
stores. The single assignment trace requires the same amount of memory loads as
the identity trace. Compared to Figure 2.14, there are three times more memory
stores on variables that are already dead. The other four memory stores executed
are identical to those of the identity trace.

The accesses for the trace shown in Figure 2.15 is computed as introduced in
Section 2.5.1. The computation outputs this list of samples: (1, 2, 2, 2, 2, 2, 2). As
expected for each variable there is only one entry in the list. Different to the
accesses of the identity trace, there are more entries. By coincidence each vari-
able except G is accessed twice. Computing the access distance results in the
following list of samples (0, 1, 2, 3, 3, 5, 6). The overlapping liveness variables are
observed by counting the overlapping liveness intervals and result in the displayed
list (1, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 1, 1). Since the liveness intervals are not changed dur-
ing transforming a trace, these values are the same as for the identity trace. The
samples for the liveness interval length look as follows (0, 1, 2, 3, 3, 5, 6). For this
example the samples of the access distance and the liveness interval length are
identical, but this is a coincidence. Table 2.3 presents the statistical metrics.

For this single assignment trace we observe 2 cache loads, 7 cache stores, 4
memory loads, and 7 memory stores that result in a CPA of 4.92. This result is
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Metric Min. Max. Avg.
Percentile

5% 25% 50% 75% 95%

Accesses 1.00 2.00 1.86 1.30 2.00 2.00 2.00 2.00
Access Distance 0.00 6.00 2.86 0.30 1.50 3.00 4.00 5.67
Overlapping Liveness. 1.00 3.00 2.08 1.00 2.00 2.00 3.00 3.00
Liveness Interval Length 0.00 6.00 2.86 0.30 1.50 3.00 4.00 5.69

Table 2.3: Metrics of the single assignment trace trace are illustrated by Figure 2.18
(values are rounded).

slightly worse than the CPA of the identity trace presented by Equation (2.7.1).

CPA(Tsingle assigment, CLRU ) =
1 ∗ (2 + 7) + 5 ∗ (4 + 7)

13
= 4.92 (2.7.2)

2.7.3 Compact Trace

Figure 2.19 shows the annotated liveness intervals of the compact trace based on
Figure 2.16. The most significant difference compared to the others two traces is the
number of variables used. Variable B is reused instead of picking a new variable.
Obviously, there are less memory stores required than for the single assignment
trace. Furthermore, there are even less memory stores required than for the identity
trace. The reason is that reusing variable B turns the memory store into a cache
store. The other memory accesses are quite similar as explained above. Each
liveness interval begins with a cache store. Variable A allows two cache loads. The
memory stores on the instruction numbers 3, 4, 5, and 9 are identical for all three
traces. Same for the memory loads at the instruction numbers 4, 5, 9, and 12.

For the trace presented in Figure 2.16 the list of samples for the accesses metric
is (2, 4, 7). According the number of used variables the list consists of three values.
The samples of the access distance look as follows (0, 1, 2, 2, 2, 2, 2, 3, 3, 5, 6). The
list of overlapping liveness intervals of the compact trace is identical to the list of
the identity trace, (1, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 1, 1). The reason is that the liveness
intervals are not changed, but are rearranged. As already mentioned the samples
for the liveness interval length are the same as for the single assignment trace and
the identity trace, (0, 1, 2, 3, 3, 5, 6). The reason for this is that the liveness intervals
are never changed. The resulting statistical metrics are presented by Table 2.4.

There are 2 cache loads, 7 cache stores, 4 memory loads, and 4 memory stores
required for the execution that result in a CPA of 3.77. That shows that for this
example the presented compact trace performs best.

CPA(Tcompact, CLRU ) =
1 ∗ (2 + 7) + 5 ∗ (4 + 4)

13
= 3.77 (2.7.3)
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Figure 2.19: Liveness intervals of the C code example shown in Figure 2.2 in com-
pacted form. Annotated by the different kinds of memory accesses. Assuming a
LRU cache with 2 cache lines, each cache line fits exactly one variable.

Metric Min. Max. Avg.
Percentile

5% 25% 50% 75% 95%

Accesses 2.00 7.00 4.33 2.20 3.00 4.00 5.50 6.70
Access Distance 0.00 6.00 2.55 0.50 2.00 2.00 3.00 5.50
Overlapping Liveness 1.00 3.00 2.08 1.00 2.00 2.00 3.00 3.00
Liveness Interval Length 0.00 6.00 2.86 0.30 1.50 3.00 4.00 5.69

Table 2.4: Metrics of the compact trace trace illustrated by Figure 2.19 (values are
rounded).

2.7.4 Conclusion

To conclude, for each metric and the performance the three traces are compared.
This example illustrates the differences of the identity trace, the single assignment
trace, and the compact trace.

2.7.4.1 Performance

Table 2.5 presents the computed performance for each trace executed on a simulated
cache based on LRU eviction policy. As the table shows, a transformation not
always leads to an improvement. For this example the compacted trace yields the
best performance.
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Trace CPA

Identity 4.15
Single Assignment 4.92
Compact 3.77

Table 2.5: Compare the performance of all three different traces.

2.7.4.2 Accesses

By transforming a trace into another one, the total number of accesses never
changes. Nevertheless, which variable and how many times it is accessed could
be different. Table 2.6 illustrates the comparison of the three traces discussed. Ob-
viously, the variables of the single assignment trace are accessed significantly less
often than it is the case for the others. To pick one value, 95 percentage of all vari-
ables of the single assignment trace are accessed only twice. For the identity trace
and the compact trace the 95% percentile is larger than 6. Hence, the variables of
the compact trace and the identity trace are accessed ∼ 3 times more often that
those of the single assignment trace.

Trace Min. Max. Avg.
Percentile

5% 25% 50% 75% 95%

Identity 2.00 7.00 3.25 2.00 2.00 2.00 3.25 6.25
Single Assignment 1.00 2.00 1.86 1.30 2.00 2.00 2.00 2.00
Compact 2.00 7.00 4.33 2.20 3.00 4.00 5.50 6.70

Table 2.6: Compare the accesses metric of all three different traces.

2.7.4.3 Access Distance

Table 2.7 shows the comparison of the access distance metric. The differences
between identity trace and compact trace are minimal. The reason is that there
is only one difference, the liveness interval of variable D of the identity trace is
merged into variable B of the compact trace. For the calculation this means that
there is one sample more in the list of the compact trace. All other samples are
identical to those the identity trace. The differences between identity trace and
single assignment trace are more significant. The reason is that the access distance
of the single assignment trace is reduced to the liveness intervals. In this case the
list of samples for the single assignment trace is shorter than the one of the identity
trace.

2.7.4.4 Overlapping Liveness

The results for the overlapping liveness metric are presented in Table 2.8. Unex-
pectedly, the results for all three traces are identical. Hence, the liveness intervals
are not modified by any transformation.
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Trace Min. Max. Avg.
Percentile

5% 25% 50% 75% 95%

Identity 0.00 6.00 2.60 0.45 2.00 2.00 3.00 5.55
Single Assignment 0.00 6.00 2.86 0.30 1.50 3.00 4.00 5.67
Compact 0.00 6.00 2.55 0.50 2.00 2.00 3.00 5.50

Table 2.7: Compare the access distance metric of all three different traces.

Trace Min. Max. Avg.
Percentile

5% 25% 50% 75% 95%

Identity 1.00 3.00 2.08 1.00 2.00 2.00 3.00 3.00
Single Assignment 1.00 3.00 2.08 1.00 2.00 2.00 3.00 3.00
Compact 1.00 3.00 2.08 1.00 2.00 2.00 3.00 3.00

Table 2.8: Compare the overlapping liveness metric of all three different traces.

2.7.4.5 Liveness Interval Length

The results for the liveness interval length metric does not show any differences
between the three traces as Table 2.9 illustrates. It is as expected, because the
liveness intervals are not modified by any transformation.

Trace Min. Max. Avg.
Percentile

5% 25% 50% 75% 95%

Identity 0.00 6.00 2.86 0.30 1.50 3.00 4.00 5.69
Single Assignment 0.00 6.00 2.86 0.30 1.50 3.00 4.00 5.69
Compact 0.00 6.00 2.86 0.30 1.50 3.00 4.00 5.69

Table 2.9: Compare the liveness interval length metric of all three different traces.



CHAPTER 3
Problem Statement

Definition 3.1 (Problem statement).
Given a trace T of load and store instructions find metrics that characterize the trace
performance for a given cache C and implement an execution engine for computing
their quantities.
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CHAPTER 4
Implementation

This chapter explains the implementation of our environment used for the experi-
ments presented by Chapter 5. Chapter 2 explains the theoretical background for
the tool chain applied to observe the required information. In general, there are
two major aspects we are interested in, (1) the performance of a trace and (2) the
metrics of a trace which characterize its performance.

4.1 Workflow

We implemented a multistate offline approach to observe all the information as illus-
trated by Figure 4.1. In this context offline indicates that there are analyses before
executing the trace. More specific, this is about Preparation, and Transformation
& Analysis.

Compilation It is required to generate a binary of a benchmark which should
be analyzed. The benchmarks we used are presented by Section 4.4. For our
experiments these benchmarks are compiled with GCC 4.8.5 on Ubuntu 16.04
for AMD OpteronTMProcessor 6376 with x86 64 Architecture.

Preparation Next is to obtain a trace of load and store instruction on addresses.
We use the Valgrind[11] tool called Lackey to obtain all the memory accesses
of an x86 64 executable. This represents the trace of the benchmark which
will be analyzed and transformed later on.

Analysis After the trace has been obtained and before it is executed, we ana-
lyze the trace to observe the metrics explained in Section 2.5. The observed
information is partly used by some of the caches presented by Section 4.3.

Execution & Transformation Finally the trace can be executed to figure out its
performance. During execution the trace is transformed. An allocator is used
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to proceed the transformation into a single assignment trace, or a compact
trace, or an identity trace. In this work there are several caches available
which are presented by Section 4.3. During execution the memory accesses
are counted which are finally used to calculate the performance.

4.2 Allocators

This section presents the implementation of the trace transformation. In general,
for every trace there is a transformation required to replace the addresses observed
via Valgrind by variables. Even for analyzing the identity trace a transformation
is required. The actual transformation is done during the execution phase by an
allocator. Each store instruction is interpreted like a malloc in C. Hence, each store
instruction forces the allocator to return a variable to operate on. This is the point
in time where an address is replaced by a variable. It is up to the used allocator if a
new variable is returned or a variable is reused. This architecture is the reason why
also for the execution the identity trace, a transformation is applied. In our system
there are three types of allocators: the Identity Allocator, the Single Assignment
Allocator and the Compact Allocator.

4.2.1 Identity Allocator

The identity allocator is used to measure the performance of a programs original
trace This allocator produces the identity trace as explained by Section 2.6. The
identity trace is important to figure out which one of the other transformations
shows an improvement. The implementation of the identity allocator is as simple
as it simply used the addresses of a trace as variables.

4.2.2 Single Assignment Allocator

The single assignment allocator is used to illustrate the performance of never reusing
any address at all. This can be interpreted as a compacting allocator with a com-
paction ration of 0 percentage. That means there is no compaction. It is imple-
mented by a bump pointer allocator assuming endless memory. Each time there is
a store instruction, the bump pointer is increased and the new variable is used. The
bump pointer is never decreased.

4.2.3 Compacting Allocator

The compacting allocators are used to illustrate the advantages and disadvantages
of compaction. Compaction is achieved by using a free list. If the free list is empty,
the bump pointer is increased and the new variable is used. Otherwise a variable
of the free list is taken. The variable is removed from the list and returned for
usage. This work presents three different implementations of the compact allocator.
These differ in the semantics of the free list, there is one implementation with stack
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semantic, one with queue semantic, and one with set semantic. The stack semantic
is equivalent with picking the most recently freed variable. In contrast to the stack
semantic there is the queue semantics which represents picking the least recently
freed variable. And finally the set semantic represents picking a random variable of
the freed ones.

4.3 Caches

This section presents our implementations of caches. As explained by Section 2.1
within the environment of computer where CPU communicates with the main mem-
ory a cache is a hardware component. For the purpose of this work all caches sim-
ulated are implemented in software. This allows us to analyze multiple different
caches. Obviously, we cannot measure real time for the execution of a trace because
every component of our environment is implemented in software. This is the reason
why in Section 2.4 the performance is defined by the number of different memory
accesses instead of using the total execution time of a benchmark as usually.

Nevertheless, our cache implementations offer the most basic properties as con-
figurable parameters. For all implementations the cache size and the cache line size
are configurable. The LRU caches offer several more configurable parameters.

Remark. Note that our cache implementations operate on variables rather than on
addresses. This is because the applied allocator transforms the trace of addresses
into a trace of variables.

In our environment four caches are available. There two different eviction poli-
cies implemented. One using the classical LRU algorithm to decide which item of
the cache will be evicted. And the other one using an algorithm proposed by Belady
in his work [2] from 1966 to decide on the item which will be evicted.

For both algorithms used as eviction policy, there is another implementation
which has full information about the liveness intervals of all variables of a trace.
This enables further optimizations as explained below.

4.3.1 MIN Cache

This implementation of a cache is based on the algorithm proposed in [2], called
Beladys algorithm (MIN). The basic idea behind Beladys algorithm is to evict the
item within the cache which is not need for the longest time. More precise, if there
is a dead item in the cache this is evicted, otherwise the item that is accessed
again furthest in the future is evicted. In praxis this algorithm is hard to apply,
because it would require to know the future which is not the case in real systems.
Nevertheless, analyzing an implementation of this approach is quite interesting,
because the algorithm has been proven to be the optimal eviction policy ([10], [15],
[16], [9]). Even if this algorithm is hardly applicable in reality, our environment
offers all requirements. This is one advantage of the offline analysis of a trace.
All required information for the Belady algorithm is already available before the
execution begins.
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4.3.2 Least Recently Used Cache

This implementation of a cache is based on the LRU algorithm, which is part of
the literature since years ([8], [5], [12], [7], and many more). Different than Beladys
algorithm the LRU approach is widely used in praxis. Instead of caring about future
accesses which are unknown in realty, this approach takes a look at the past accesses.
For this reason it is required to keep track of the accesses on the currently cached
items. A LRU cache decides based on its track information and always decided on
the item in the cache which has not been accessed for the longest time. This is also
the source of its name, least recently used. The idea behind is that an item that has
not been accessed for longer, therefore is a possibility that it is not needed anymore
but is still in the cache. For the purpose of this work the LRU cache implementation
which comes with Valgrind is used.

4.3.3 Cache Proceeding

4.3.3.1 Without Liveness Information

The proceeding of a cache without liveness information in general is identical for
the LRU implantation and the Belady implementation. The only difference is in
the choice of the eviction candidate.

Figure 4.2 illustrates the proceeding of the caches. Everything starts with the
access on a variable. Right now it does not matter if the access is a load or a
store instruction. At first, it is checked if the accessed variable is currently in the
cache. In the case that the variable is cached, this is a cache hit; we are done and
the initial access can be executed without any further actions. Otherwise, if the
accessed variable is not cached, it is a cache miss. Such a case requires further
action; namely the next step is to check if there is space for at least one more
variable in the cache.

If the cache is full, it is required to make some space. This is achieved by
applying the eviction policy to decide on the variable which will be kicked out of
the cache. The value of the eviction candidate has to be saved. For this reason its
value is written back to the main memory by a store instruction. Then, the accessed
variables value can be loaded from the main memory and finally the requested access
can be executed.

In case that the cache is not full, we are able to skip the selection of an eviction
candidate and of course it is not required to save its value in the main memory,
therefore the store instruction is not needed. Such a situation allows to immediately
load the value of the requested variable. In this case an expensive store instruction
on the main memory is saved.

Summarizing, in the worst case it is required to execute two expensive main
memory instructions before the actual variable can be accessed. This is not optimal
in comparison to the best case which does not require any main memory access.
However, as Figure 4.2 illustrates, there is the possibility to get rid of at least one
of the expensive instructions.
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4.3.3.2 With Liveness Information

Section 4.3.3.1 shows that there are certain cases in which the number of expensive
main memory accesses can be reduced. This sections tries to minimize the number
of main memory accesses by using the information about the liveness intervals of a
trace. Again the LRU implementation and the Belady implementation differ only
by the selection of the eviction candidate.

Figure 4.3 illustrates the proceeding for caches with liveness information. Ev-
erything starts with the access on a variable. By now it does not matter which kind
of access it is. In case it becomes relevant, it will be discussed. As without liveness
information the first thing to do, is to check whether the accessed variable is cached
or not. If the accessed variable is in the cache, it is a cache hit and we are done.
The actual access can be executed directly on the cache. Otherwise, if the accessed
variable is not in the cache yet, its a cache miss. A cache miss requires further steps
to get the accessed variable into the cache.

Next is to check whether the cache is full or not. In case there is no more space
in the cache for another variable, it is necessary to evict one of the cached variables.
The eviction candidate is chosen by the eviction policy of the cache, either via
LRU algorithm or via Beladys algorithm. While proceeding a variable access, the
selection of the eviction candidate is the only difference which might occur between
the two available implementations which use liveness information. Next, we make
use of the liveness information by proving if the eviction candidate is live or dead.
If the eviction candidate is still live; this means its liveness interval did not end yet,
and it is necessary to save the variables value. For this reason a store instruction on
the main memory is executed to save the eviction candidates value. If the variable
chosen for eviction is dead, it is not required to save its value, because it is not used
anymore in future. This is why the store instruction on the main memory can be
skipped. If the cache is not full yet, then the whole eviction procedure, selecting a
variable to evict and saving its value if needed, can be skipped.

After all the possible steps and opportunities so far the cache has reached a
state in which there is at least one free spot available for the accessed variable. The
only question remaining is: Do we have to load the accessed variable from main
memory? This is the only situation in the whole procedure where the type of access
on the currently accessed variable matters. In case that the access is of type load,
it is required to load the previously written value from the main memory. In case
of a store on the currently accessed variable, its previously stored value does not
matter any more because it is overwritten anyway. For this reason, the expensive
load instruction on the main memory can be skipped.

And finally, we are able to execute the actual access on the variable directly on
the cache.

4.4 Benchmarks

Our experiments are built on two benchmark suites, the SPEC 2006 Benchmarks[6]
and the V8 Benchmarks[13]. From both benchmark suites only a subset of the
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available benchmarks are used which are are explained below.

4.4.1 SPEC 2006 Benchmarks

This section describes the subset of benchmarks of the SPEC 2006 benchmark suite
[6] which we used for our experiments. The benchmark descriptions below are taken
from the SPEC 2006 paper.

4.4.1.1 445.gobmk

Authors: (in chronological order of contribution) are Man Lung Li,
Wayne Iba, Daniel Bump, David Denholm, Gunnar Farnebäck, Nils
Lohner, Jerome Dumonteil, Tommy Thorn, Nicklas Ekstrand, Inge
Wallin, Thomas Traber, Douglas Ridgway, Teun Burgers, Tanguy
Urvoy, Thien-Thi Nguyen, Heikki Levanto, Mark Vytlacil, Adri-
aan van Kessel, Wolfgang Manner, Jens Yllman, Don Dailey, Mans
Ullerstam, Arend Bayer, Trevor Morris, Evan Berggren Daniel, Fer-
nando Portela, Paul Pogonyshev, S.P. Lee, Stephane Nicolet and
Martin Holters. General

General Category: Artificial intelligence - game playing.

Description: 1 The program plays Go and executes a set of commands
to analyze Go positions.

4.4.1.2 450.soplex

Authors: Roland Wunderling, Thorsten Koch, Tobias Achterberg

General Category: Simplex Linear Program (LP) Solver

Description: 450.soplex is based on SoPlex Version 1.2.1. SoPlex solves
a linear program using the Simplex algorithm. The LP is given as
a sparse m by n matrix A, together with a right hand side vec-
tor b of dimension m and an objective function coefficient vector
c of dimension n. The matrix is sparse in practice. SoPlex em-
ploys algorithms for sparse linear algebra, in particular a sparse
LU-Factorization and solving routines for the resulting triangular
equation systems.

4.4.1.3 454.calculix

Authors: Guido D.C. Dhondt

General Category: Structural Mechanics

Description: 2 454.calculix is based on CalculiX, a free software finite
element code for linear and nonlinear three- dimensional structural

1www.gnu.org/software/gnugo/devel.html
2www.calculix.de

www.gnu.org/software/gnugo/devel.html
www.calculix.de
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applications. It uses classical theory of finite elements described in
books such as [17]. CalculiX can solve problems such as static prob-
lems (bridge and building design), buckling, dynamic applications
(crash, earthquake resistance) and eigenmode analysis (resonance
phenomena).

4.4.1.4 462 libquantum

Authors: Björn Butscher, Hendrik Weimer

General Category: Physics / Quantum Computing

Description: 3 libquantum is a library for the simulation of a quantum
computer. Quantum computers are based on the principles of quan-
tum mechanics and can solve certain computationally hard tasks in
polynomial time. In 1994, Peter Shor discovered a polynomial-time
algorithm for the factorization of numbers, a problem of particular
interest for cryptanalysis, as the widely used RSA cryptosystem de-
pends on prime factorization being a problem only to be solvable in
exponential time. An implementation of Shor’s factorization algo-
rithm is included in libquantum. Libquantum provides a structure
for representing a quantum register and some elementary gates.
Measurements can be used to extract information from the system.
Additionally, libquantum offers the simulation of decoherence, the
most important obstacle in building practical quantum computers.
It is thus not only possible to simulate any quantum algorithm, but
also to develop quantum error correction algorithms. As libquan-
tum allows to add new gates, it can easily be extended to fit the
ongoing research, e.g. it has been deployed to analyze quantum
cryptography.

4.4.1.5 471 omnetpp

Authors: András Varga, Omnest Global, Inc.

General Category: Discrete Event Simulation

Description: simulation of a large Ethernet network, based on the OM-
NeT++ discrete event simulation system4, using an ethernet model
which is publicly available5. For the reference workload, the sim-
ulated network models a large Ethernet campus backbone, with
several smaller LANs of various sizes hanging off each backbone
switch. It contains about 8000 computers and 900 switches and
hubs, including Gigabit Ethernet, 100Mb full duplex, 100Mb half
duplex, 10Mb UTP, and 10Mb bus. The training workload models

3http://www.libquantum.de
4www.omnetpp.org
5http://ctieware.eng.monash.edu.au/twiki/bin/view/Simulation/EtherNet

http://www.libquantum.de
www.omnetpp.org
http://ctieware.eng.monash.edu.au/twiki/bin/view/Simulation/EtherNet
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a small LAN. The model is accurate in that the CSMA/CD pro-
tocol of Ethernet and the Ethernet frame are faithfully modelled.
The host model contains a traffic generator which implements a
generic request-response based protocol. (Higher layer protocols
are not modelled in detail.)

4.4.1.6 483 xalancbmk

Authors: IBM Corporation, Apache Inc, plus modifications for SPEC
purposes by Christopher Cambly, Andrew Godbout, Neil Graham,
Sasha Kasapinovic, Jim McInnes, June Ng, Michael Wong. Pri-
mary contact: Michael Wong

General Category: XSLT processor for transforming XML documents
into HTML, text, or other XML document types

Description: a modified version of Xalan-C++6, an XSLT processor
written in a portable subset of C++ . Xalan-C++ version 1.8 is
a robust implementation of the W3C Recommendations for XSL
Transformations (XSLT)7 and the XML Path Language (XPath)8.
It works with a compatible release of the Xerces-C++9 XML parser:
Xerces-C++ version 2.5.0. The XSLT language is use to compose
XSL stylesheets. An XSL stylesheet contains instructions for trans-
forming XML documents from one document type to another doc-
ument type (XML, HTML, or other). In structural terms, an XSL
stylesheet specifies the transformation of one tree of nodes (the
XML input) into another tree of nodes (the output or transforma-
tion result). Modifications for SPEC benchmarking purposes in-
clude: combining code to make a standalone executable, removing
compiler incompatibilities and improving standard conformance,
changing output to display intermediate values, removing large
parts of unexecuted code, and moving all the include locations to
fit better into the SPEC harness.

4.4.2 V8 Benchmarks

This section describes the subset of benchmarks of the V8 benchmark suite [13]
which we used for our experiments. The benchmark descriptions below are taken
from the website.

6http://xml.apache.org/xalan-c/
7http://www.w3.org/TR/xslt
8http://www.w3.org/TR/xpath
9http://xml.apache.org/xerces-c

http://xml.apache.org/xalan-c/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://xml.apache.org/xerces-c
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4.4.2.1 Richards

Description: OS kernel simulation benchmark, originally written in
BCPL by Martin Richards10 (539 lines).

Main focus: property load/store, function/method calls

Secondary focus: code optimization, elimination of redundant code

4.4.2.2 Raytrace

Description: Ray tracer benchmark based on code by Adam Burmis-
ter11 (904 lines).

Main focus: argument object, apply

Secondary focus: prototype library object, creation pattern

4.4.2.3 Deltablue

Description: One-way constraint solver12, originally written in Smalltalk
by John Maloney and Mario Wolczko (880 lines).

Main focus: polymorphism

Secondary focus: OO-style programming

10http://www.cl.cam.ac.uk/~mr10/
11http://burmister.com
12http://constraints.cs.washington.edu/deltablue/

http://www.cl.cam.ac.uk/~mr10/
http://burmister.com
http://constraints.cs.washington.edu/deltablue/
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benchmark (C/C++ code)

. . .
s = s + 1

. . .

x86 64 binary

. . .
movl -12(%rbp), %eax

addl %eax, -16(%rbp)

. . .

. . .
010101010101

. . .

memory access trace

. . .
load &s

load &x

store &s

. . .

transformed trace

. . .
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load B

store A

. . .

compilation

preparation

analysis

execution &
transformation

Figure 4.1: Workflow
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Figure 4.3: Cache behavior with liveness information



CHAPTER 5
Experiments

This chapter presents experiments executed on our environment. For this exper-
iments the benchmarks presented by Section 4.4 are analyzed. The trace of each
benchmark is observed by using Valgrind Lackey. During these experiments the
trace of each benchmark is applied to all five allocators available. In this section
the traces are named according to the applied allocator. Hence, Identity represents
the trace generated by the identity allocator, CompactStack represents a compact
trace using a free list with stack semantic, CompactQueue represents a compact
trace using a free list with queue semantic, CompactSet represents a compact trace
using a free list with set semantic, and SingleAssignment represents the trace gen-
erated by the single assignment allocator. Each allocator is executed on each cache
introduced in Section 4.3. In the following section the caches are named MIN,
MIN+Liveness, LRU, and LRU+Liveness. The suffix +Liveness indicates that the
cache makes use of the liveness information of a trace. Further, all caches of this
experiment are configured for cache size of 32KB and cache line size of 64 byte.
These values are chosen to represent a realistic cache.

Remark. When speaking about an allocator this is equivalent to speaking about the
transformed trace that results by applying this allocator.

5.1 Speedup & Compaction

This section presents the results about speedup and compaction of our allocators.
The speedup describes the relation of an allocators CPA and the CPA of the identity
allocator. The CPA of all allocators is computed as the Equation (2.4.1) illustrates.
The speedup is calculated as follows:

Speedup(Allocator, Cache) =
CPA(Identity, Cache)

CPA(Allocator, Cache)

39
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The compaction describes the memory used by a trace in relation to the memory
used by the identity allocator. The number of variables used by an allocator on
a given cache is indicated by #Addresses(Allocator, Cache). The compaction is
computed as follows:

Compaction(Allocator, Cache) =
#Addresses(Identity, Cache)

#Addressed(Allocator, Cache)

The figures below show the speedup on the y-axis and the compaction is pre-
sented on the x-axis. Values greater than one represent an improvement and values
less than one represent a worsening, in terms of performance or compaction. For
this reason we are aiming for values within the upper right corner because values in
this area represent an improvement in performance and compaction. Values at the
lower left corner represent a worsening in performance and compaction; this area
should be avoided. The remaining two areas represent either an improvement in
performance and a worsening in compaction or vice versa.

 0.01

 0.1

 1

 10

 100

 0.001  0.01  0.1  1  10  100  1000

S
p
ee

d
u
p
 (

m
o
re

 i
s 

b
et

te
r)

C
P

A
(I

d
en

ti
ty

, 
C

ac
h
e)

 /
 C

P
A

(A
ll

o
ca

to
r,

 C
ac

h
e)

Compaction (more is better)
#Addresses(Identity, Cache) / #Addresses(Allocator, Cache)

445.gobmk
450.soplex
454.calculix

462.libquantum
471.omnetpp
483.xalancbmk

deltablue
raytrace
richards

(a) CompactStack

 0.01

 0.1

 1

 10

 100

 0.001  0.01  0.1  1  10  100  1000

S
p
ee

d
u
p
 (

m
o
re

 i
s 

b
et

te
r)

C
P

A
(I

d
en

ti
ty

, 
C

ac
h
e)

 /
 C

P
A

(A
ll

o
ca

to
r,

 C
ac

h
e)

Compaction (more is better)
#Addresses(Identity, Cache) / #Addresses(Allocator, Cache)

445.gobmk
450.soplex
454.calculix

462.libquantum
471.omnetpp
483.xalancbmk

deltablue
raytrace
richards

(b) CompactSet
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(c) CompactQueue
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Figure 5.1: Correlation of Speedup and Compaction: MIN

Figure 5.1 illustrates the results of all allocators and benchmark combinations
applied on the MIN cache.
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Figure 5.1a shows the results of the CompactStack allocator in combination
with the MIN cache for all available benchmarks. Obviously, applying the Com-
pactStack allocator leads to an improvement in the number of used variables for
all benchmarks. Furthermore, most benchmarks present a better performance than
the identity allocator. Most interesting results are those of the 445.gobmk, 471.om-
netpp, and 454.calculix. The 445.gobmk benchmark presents the most significant
speedup of all benchmarks. Furthermore, it uses only the half of the variables used
by the Identity allocator. Nevertheless, there are benchmarks with a much bet-
ter compaction. The 471.omnetpp benchmark presents the best compaction result
with nearly equivalent performance as the Identity allocator. The 483.xalancbmk
presents a speedup less than one with a compaction of approximately two.

Figure 5.1b presents the results of the CompactSet allocator in combination with
the MIN cache for all available benchmarks. In comparison to the CompactStack
allocators results, the results of the CompactSet allocator are slightly worse. Es-
pecially, in terms of speedup there is a significant worsening observable. The most
outstanding benchmarks are again 445.gobmk, 471.omnetpp, and 454.calculix. The
results of 445.gobmk and 471.omnetpp are quite similar to those of the Compact-
Stack. The result of the 483.xalancbmk is clearly different to the result achieved by
the CompactStack allocator.

Figure 5.1c presents the results of the CompactQueue allocator in combina-
tion with the MIN cache for all available benchmarks. Obviously, using the Com-
pactQueue allocator is not beneficial for most benchmarks in terms of speedup.
Nevertheless, the 445.gobmk benchmark still achieved a performance improvement
with a similar compaction to the CompactStack and CompactSet allocators. Also
the 471.omnetpp benchmark presents quite identical results for speedup and com-
paction. All other benchmarks show a decrease in speedup. Furthermore, for this al-
locator 454.calculix is not the allocator with the worst speedup, it is 483.xalancbmk.

Figure 5.1d presents the results of the SingleAssignment allocator in combination
with the MIN cache for all available benchmarks. Without any detailed explanation
it is clear that the SingleAssignment allocator presents the worst results of all four
allocators. Obviously, in terms of compaction this allocator is not able to achieve
any improvement by definition. Using a new variable for each store instruction
inevitably yields in more or at least the same number of variable than used by
the Identity allocator. As expected, all data points are within the left half of the
figure. Unfortunately, none of the benchmarks are able to least achieve the same
performance as the Identity allocator. Only the 445.gobmk benchmark is close to
one. Note that the 471.omnetpp benchmark, which achieved the best compaction
for the other three allocators, now presents the worst compaction. And additionally,
it also offers the worst speedup.

Figure 5.2 illustrates the results of all benchmarks and allocator combinations
applied on the MIN+Liveness cache. According to the proceeding presented by
Section 4.3.3.2, the compaction is not influenced by using the liveness information.
For this reason we can focus on performance while comparing the caches based on
Beladys algorithm (MIN).

Figure 5.2a presents the results of the CompactStack allocator in combination
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(c) CompactQueue
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(d) SingleAssignment

Figure 5.2: Correlation of Speedup and Compaction: MIN+Liveness

with the MIN+Liveness cache for all benchmarks. The relations between the bench-
marks are quite similar to those of the MIN cache. As mentioned above compaction
is not influenced by using the liveness information. This is why the 471.omnetpp
benchmark still shows the most compaction and 445.gobmk is still one of the bench-
marks with the least improvement in compaction. Even with the least improvement
the 445.gobmk benchmark uses only half of the addresses required by the Identity
allocator. In terms of performance the 445.gobmk benchmark remains as the bench-
marks with the most speedup. In general, the speedup for the MIN+Liveness cache
is slightly worse than for the MIN cache. The reason is that also the performance
of the Identity allocator improves by using the MIN+Liveness cache. Hence, the
gap shrinks and the speedup decreases.

Figure 5.2b presents the results of the CompactSet allocator in combination with
the MIN+Liveness cache for all benchmarks. For the CompactSet allocator the dif-
ferences to the MIN cache without liveness information are hard to see on this figure.
The details for the benchmarks 445.gobmk, 471.omnetpp, and 483.xalancbmk are
presented by Figures 5.5 to 5.7.

Figure 5.2c presents the results of the CompactQueue allocator in combination
with the MIN+Liveness cache for all benchmarks. Unfortunately, the MIN+Liveness
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cache is not able to push the results up into the right upper corner. Hence, the
benchmarks performance is worse using the CompactionQueue allocator than using
the Identity allocator. Nevertheless, there is an improvement observable in compar-
ison it the MIN cache.

Figure 5.2d presents the results of the SingleAssignment allocator in combination
with the MIN+Liveness cache for all benchmarks. The usage of liveness information
has an positive influence on the speedup of the benchmarks. Nevertheless, the
influence is too small to push the results into an area which is more beneficial.
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(c) CompactQueue
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(d) SingleAssignment

Figure 5.3: Correlation of Speedup and Compaction: LRU

Figure 5.3 illustrates the results of all benchmarks and allocator combinations
applied on the LRU cache. Obviously, the algorithm that decided which item is
evicted has an enormous influence.

Figure 5.3a presents the results of the CompactStack allocator in combination
with the LRU cache for all benchmarks. This figure presents a quite different
result as shown by Figure 5.1a. Overall the speedup is much worse for most of the
benchmark in comparison to the MIN caches. Nevertheless, there are still three
outstanding benchmarks to discuss. (1) The 471.omnetpp benchmark remains the
benchmark with the most compaction. (2) The 483.xalancbmk benchmark presents
the highest decrease in performance. For the MIN caches this benchmark already
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shows a poor speedup, but with the LRU cache it becomes the benchmark with the
least speedup. (3) The 445.gobmk benchmark and the 462.libquantum benchmark
that present the best performance. As for the MIN caches the 445.gobmk benchmark
remains the benchmark with the highest speedup. Furthermore, the 462.libquantum
benchmark shows a significant improvement in speedup to the LRU cache.

Figure 5.3b presents the results of the CompactSet allocator in combination with
the LRU cache for all benchmarks. In an overall perspective also the CompactSet
allocator is not able to achieve that much speedup using the LRU cache compared
to a MIN cache. Most of the benchmarks present a worsening in performance which
results in less speedup. Nevertheless, two benchmarks present a speedup larger than
one 445.gobmk and 462.libquantum, namely. The 485.xalancbmk presents again the
least speedup of all benchmarks and the 471.omnetpp remains the benchmark with
most compaction.

Figure 5.3c presents the results of the CompactQueue allocator in combination
with the LRU cache for all benchmarks. The CompactQueue allocator presents a
similar behavior as the CompactStack and CompactSet allocators. Most of the data
points show a worsening in speedup. In an overall perspective the CompactQueue
allocator has the worst speedup results of all four allocators. In detail there are
two quite interesting things to observe. First, the 445.gobmk benchmark shows a
speedup less than one, while 462.libquantum remains the only benchmark with a
speedup greater than one. Secondly 483.xalancbmk is not the benchmark with the
worst speedup for this allocator. The benchmark with the worst speedup is the
Richards benchmark.

Figure 5.3d presents the results of the SingleAssignment allocator in combination
with the LRU cache for all benchmarks. As expected, the results of the SingleAssign-
ment allocator occur in the left lower corner. In comparison to the MIN+Liveness
cache the speedups vary more. Unexpectedly the 445.gobmk presents a speedup
greater than one for this allocator for the first time.

Figure 5.4 illustrates the results of all benchmarks and allocator combinations
applied on the LRU+Liveness cache.

Figure 5.4a presents the results of the CompactStack allocator in combination
with the LRU+Liveness cache for all benchmarks. The presented speedup results are
quite similar to those of the LRU cache without liveness information. Nevertheless,
one thing is still worth mentioning, the 462.libquantum has significantly improved
in terms of speedup. It reaches a speedup close 445.gobmk benchmark.

Figure 5.4b presents the results of the CompactSet allocator in combination with
the LRU+Liveness cache for all benchmarks. The CompactSet allocator shows only
minimal improvements as the CompactStack allocator. Except the 462.libquantum
benchmark which improves its speedup significantly. All other benchmarks remain
within the right left corner as before. This indicates a good compaction and a poor
speedup.

Figure 5.4c presents the results of the CompactQueue allocator in combination
with the LRU+Liveness cache for all benchmarks. For the CompactQueue allocator
in combination with the LRU algorithm as base of the eviction policy is seems that
the liveness information has no significant influence.
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(a) CompactStack
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(b) CompactSet
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(c) CompactQueue
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(d) SingleAssignment

Figure 5.4: Correlation of Speedup and Compaction: LRU+Liveness

Figure 5.4d presents the results of the SingleAssignment allocator in combination
with the LRU+Liveness cache for all benchmarks. Similar to the CompactQueue
allocator and also for the SingleAssignment allocator is seems that the liveness
information does not improve the speedup significantly.

5.1.1 445.gobmk

In this section we take a closer look at the speedup and compaction of the 445.gobmk
benchmark. Figure 5.5a presents an overview of the speedup results of the 445.gobmk
benchmark of all allocators and caches applied.

A speedup below indicates that the performance of this allocator is worse than
the performance of the Identity allocator by using the same cache. In case of the
445.gobmk there are 4 such scenarios in which an allocator performance is worse
than the Identity allocator.

For the MIN cache the SingleAssignment allocators presents a speedup of 0.71
which means that its performance is 29% slower in comparison to the Identity
allocator. For the MIN+Liveness cache also the SingleAssignment allocator has the
worst performance. As expected the usage of the liveness information yields an
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improvement, the performance decreases by 14%. Because the SingleAssignment
allocator uses many more variables than the other allocators its results are not
surprising.

For the more realistic cache implementations based on the LRU algorithm the
SingleAssignment allocator performs better and presents a speedup above one. Nev-
ertheless, there is another allocator which does not perform well on the LRU caches,
the CompactQueue. The CompactQueue allocator shows a speedup of 0.29 for the
LRU cache and 0.34 for the LRU cache using liveness information. Again the live-
ness information has a significant influence. Nevertheless, the performance of the
CompactQueue allocator is 64%-71% worse than the performance of the Identity
allocator.

However, the CompactStack allocator is the allocator with the highest speedup
for each cache. The most impressive speedup is shown for the LRU cache, in this
scenario the CompactStack allocator reaches a speedup of 4.37.

The compaction shown by Figure 5.5b is identical for all compacting allocators,
which is as expected according to the workflow presented by Figure 4.3. It is
worth mentioning that all three compacting allocators are able to use 2.78 times
less variables than the Identity allocator does. Furthermore, it is not surprising
that the SingleAssignment allocators requires that many more variables than the
Identity allocator.
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Figure 5.5: Speedup & Compaction: 445.gobmk

5.1.2 471.omnetpp

Figure 5.6 presents the results of the 471.omnetpp benchmark in detail.
Figure 5.6a shows the speedup of all allocators and caches of the 471.omnetpp

benchmark. Obviously, the speedup results of the 471.omnetpp benchmark are
significant worse than those of the 445.gobmk benchmark. Just for the two caches
MIN and MIN+Liveness the 471.omnetpp benchmark is able to achieve a speedup
greater than one at all. And for these caches only the compacting allocators are
slightly greater than one. The results for the LRU caches are dramatically worse.
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For the LRU caches, none of the allocators are able to achieve a speedup close
to one. However, the CompactionStack allocator presents the best results of all
allocators and again the CompactQueue allocators shows the worst results.

Figure 5.6b presents the compaction of the 471.omnetpp benchmark. As the
previous figures suggested, the compaction of the 471.omnetpp benchmark is ex-
tremely high. All compacting allocators require 39.76 times less variables than the
Identity allocator does. Furthermore, the compaction of the SingleAssignment allo-
cator is quite interesting, because it indicates that the trace consists of many store
instructions which lead to a compaction of 0.004.
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Figure 5.6: Speedup & Compaction: 471.omnetpp

5.1.3 483.xalancbmk

Figure 5.7 presents the results of the 483.xalancbmk benchmark in detail.
Figure 5.7a shows the speedup results of the 483.xalancbmk. Unfortunately,

the presented results show only two scenarios for which a speedup greater than
one can be achieved. Namely, this scenarios are the CompactStack allocator in
combination with the MIN cache and the CompactStack allocator in combination
with the MIN+Liveness cache. The CompactSet allocator is close to one but stays
below even if a cache uses the liveness information. On the LRU caches, none of
the presented allocators is able to achieve a speedup above 0.15. Which means that
all allocators show a performance at least 85% worse than the Identity allocators
performance.

However, Figure 5.7b presents quite good results for the compaction. The com-
pacting allocators are able to use 7.14 times less variables than the Identity alloca-
tors does.

5.2 Performance

This section presents the performance of the benchmarks. The performance is
computed as explained by Section 2.4. All figures of this section show the CPA on
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Figure 5.7: Speedup & Compaction: 483.xalancbmk

the y-axis, computed as illustrated by Equation (2.4.1). On the x-axis the allocators
are shown in groups of the applied cache. Additional to the performance we take
a look at the distribution of cache misses and caches hits and influences of the
different kinds of memory accesses. By now we focus on the benchmarks namely
445.gobmk, 471.omnetpp, and 483.xalancbmk. The remaining figures can be found
at Chapter 6. For each benchmark two figures are presented. Both figures show
the performance in CPA, but the figure on the left hand-side additionally presents
the distribution of cache misses and cache hits and the figure on the right hand-side
illustrates the different kinds of memory accesses.

5.2.1 445.gobmk

Figure 5.8 presents the results of the 445.gobmk benchmark. For each group of
allocators, e.g., the five allocators Identity, CompactStack, CompactSet, Com-
pactQueue, and SingleAssignment of the LRU group, the results of Identity rep-
resent the baseline. Lets stick with the first group. The baseline is a CPA of
15.22. The allocators CompactStack, CompactSet, and SingleAssignment perform
better than the Identity. This means the performance of the original trace can
offer potential improvement, as shown by these three allocators. However, not all
of them show an improvement. The CompactQueue allocators presents a dramat-
ically worse performance than Identity. Nevertheless, we observe that the CPA of
the CompactQueue presented by the LRU cache is the worst. For the other cache
implementations its performance is significant better. To describe it in more de-
tail the CompactQueue allocator performs much better on the MIN caches than
on the LRU caches. For the MIN caches the performance of the SingleAssignment
approach is the worst. The CompactStack allocator is best on all cache imple-
mentations. This nicely illustrates the influence of the underlining cache. It seems
that all allocators benefit from the usage of liveness information. Not surprisingly
the MIN cache is beneficial for all allocators. Taking to account the shown cache
misses and cache hits, the poor performance of the CompactQueue allocator is not
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that surprising anymore. Obviously, the CompactQueue implementation yields the
most cache misses, e.g., for the LRU cache. Which in this case leads to more main
memory accesses as illustrated by Figure 5.8b. For all other allocators there much
less main memory loads and main memory stores. Summarizing the Figure 5.8
illustrates that there is potential for performance improvement of the 445.gobmk
benchmark.
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Figure 5.8: Performance: 445.gobmk

5.2.2 471.omnetpp

Figure 5.9 presents the performance results of the 471.omnetpp benchmark. As
before both figures illustrate the performance in CPU, but on the left hand-side the
distribution of cache misses and cache hits is shown and on the right hand-side the
relation of the different memory accesses is presented. For this benchmark the Iden-
tity results are much better than the results of the 445.gobmk benchmark. Since
the Identity CPAs are quite close to 1 (1.85, 1.82, 1.04, and 1.03), there is not much
space for improvement, especially for the MIN implementations. Nevertheless, only
for the MIN implementation we are able to achieve an improvement with the al-
locators CompactStack, CompactSet, and CompactQueue. The approach without
compaction, SingleAssignment, seems to be a bad choice for this benchmark, be-
cause for all four cache implementations it shows poor performance. As before it is
observable that those allocators with less cache misses end up with less main mem-
ory accesses. What is plausible although a cache miss does not necessarily force a
main memory access, as Figure 4.3 illustrates. According to the work flow shown
by Figure 4.3 the hypothesis raises that the 471.omnetpp benchmark consists of
many variables with overlapping liveness intervals or this benchmark is very load
intensive or both aspects are more pronounced compared to 445.gobmk.



50 CHAPTER 5. EXPERIMENTS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

Identity
C

om
pactS

tack
C

om
pactS

et
C

om
pactQ

ueue
S
ingleA

ssignm
ent

Identity
C

om
pactS

tack
C

om
pactS

et
C

om
pactQ

ueue
S
ingleA

ssignm
ent

Identity
C

om
pactS

tack
C

om
pactS

et
C

om
pactQ

ueue
S
ingleA

ssignm
ent

Identity
C

om
pactS

tack
C

om
pactS

et
C

om
pactQ

ueue
S
ingleA

ssignm
ent

C
ir

cl
es

 p
er

 A
cc

es
s 

(C
P

A
)

(l
es

s 
is

 b
et

te
r)

1.04 1.00 1.00 1.00

9.05

1.03 1.00 1.00 1.00

5.05

cache hits
cache misses

1.85

5.99 6.31

26.56

17.04

1.82

5.76 6.02

19.93

13.04

LRU+LivenessLRUMIN+LivenessMIN

(a) Cache misses and cache hits

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

Identity
C

om
pactS

tack
C

om
pactS

et
C

om
pactQ

ueue
S
ingleA

ssignm
ent

Identity
C

om
pactS

tack
C

om
pactS

et
C

om
pactQ

ueue
S
ingleA

ssignm
ent

Identity
C

om
pactS

tack
C

om
pactS

et
C

om
pactQ

ueue
S
ingleA

ssignm
ent

Identity
C

om
pactS

tack
C

om
pactS

et
C

om
pactQ

ueue
S
ingleA

ssignm
ent

C
ir

cl
es

 p
er

 A
cc

es
s 

(C
P

A
)

(l
es

s 
is

 b
et

te
r)

1.04 1.00 1.00 1.00

9.05

1.03 1.00 1.00 1.00

5.05

Cache Load
Cache Store

Memory Load
Memory Store

1.85

5.99 6.31

26.56

17.04

1.82

5.76 6.02

19.93

13.04

LRU+LivenessLRUMIN+LivenessMIN

(b) Types of memory operations

Figure 5.9: Performance: 471.omnetpp

5.2.3 483.xalancbmk

Figure 5.10 illustrates the performance of the 483.xalancbmk. The most obvious
observation is that the performance gap of the LRU cache implementations and
the MIN implementations is dramatical. Hence, the LRU cache is not the optimal
cache for our compacting allocators. In a worst case our transformations yield
approximately a 10 times worse CPA than the Identity. The source of this poor
performance seems to be that the compaction increases the number of cache misses.
Unfortunately, many of the cache misses yield a main memory access, as illustrated
by Figure 5.10b. Peeking CompactQueue, as an outstanding example the number
of cache misses is nearly identical with the number of main memory access which
leads to its poor performance. As expected, the implementation of the LRU cache
which uses the liveness information is able archive a better CPA for all allocators.
But even those results are far from good. However, the results for the MIN caches
are much better than those of the LRU caches. Even though the performance of
the MIN caches is much better; there is only one allocator which is able to improve
the performance in comparison to the Identity allocator namely CompactStack.
CompactSet is close to the original performance but the other two CompactQueue
and SingleAssignment do not perform as good.

5.3 Statistical Analysis

This section presents the statistical analysis on the benchmarks according to the
metrics presented in Section 2.5. The metrics presented are observed from the
Identity allocator. More details and further tables can be found in Chapter 6.

Table 5.1 shows the most basic data for all analyzed benchmarks. The number
of instructions varies according to the size of a benchmark. The column Number of
Instructions shows the total number of load and store instructions. The columns
Loads and Store present the distribution of loads and stores shown as percentage.
Most of the listed benchmarks are store-intensive and consist of more store instruc-
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Figure 5.10: Performance: 483.xalancbmk

Benchmark Size [MB] Number of Instructions Loads [%] Stores [%]

445.gobmk 1781.76 186.74× 106 50.20 49.80
450.soplex 196.29 20.58× 106 27.90 72.10
454.calculix 505.71 53.03× 106 31.93 68.07
462.libquantum 945.71 99.17× 106 14.28 85.72
741.omnetpp 8069.12 8.46× 109 39.40 60.60
483.xalancbmk 1269.76 133.66× 106 25.47 74.53
richards 790.51 82.89× 106 24.90 75.10
raytrace 591.43 62.02× 106 35.33 64.67
deltablue 2590.72 272.17× 106 25.62 74.38

Table 5.1: Basic benchmark data

tions than load instructions. Except the 445.gobmk benchmark that presents a
distribution of 50.20 percent loads and 49.8 percent stores. 462.libquantum consists
of 85.72 percent stores which is the maximum for all listed benchmarks.

445.gobmk 471.omnetpp 483.xalancbmk

Count 1.67× 106 983.77× 103 859.19× 103

Average 111.56 859.89 155.57
Minimum 1.00 1.00 1.00
Maximum 12.06× 106 19.44× 106 2.42× 106

Percentile 5% 20.00 5.00 1.00
Percentile 25% 20.00 51.00 8.00
Percentile 50% 20.00 93.00 11.00
Percentile 75% 20.00 164.00 23.00
Percentile 95% 23.00 391.00 454.00

Table 5.2: Metric: Accesses

Table 5.2 presents the results of the access distance for the benchmarks 445.gobmk,
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471.omnetpp, and 483.xalancbmk. Table 1 presents the results for all benchmarks.
Count represents the number of different used variables. The arithmetic mean shows
that the variables of 445.gobmk are accessed 111.56 times in average, variables of
471.omnetpp are accessed 859.89 times in average, and variables of 483.xalancbmk
are accessed 155.57 times in average. Clearly the variables of the 471.omnetpp
benchmarks are accessed most often. Minimum and maximum show that at least
one variable exists that is accessed only once and that there is at least on variable
which is accessed 12057070, 19444797, and 2416458 for the benchmarks 445.gobmk,
471.omnetpp, and 483.xalancbmk. Investigating the results of the percentiles shows
that the average is misleading. For the 445.gobmk benchmark, the 95% percentile
presents a value of 23. Hence, 95% of all variables are accessed at most 23 times.
This indicates that the remaining 5% of the variables are accessed significantly more
often. Otherwise the average would not result in a value that high. These values
indicate that half of the variables are accessed with a high frequency. The 25% per-
centile shows that the variables which are accessed with an even higher frequency.
The 445.gobmk benchmark presents a 25% percentile of 3. On the opposite, the
results of the 445.gobmk benchmark for the 95% percentile illustrate that 5% of
the variables used are accessed with large distances. For the benchmarks 471.om-
netpp and 483.xalancbmk the 95% percentile is significantly larger then the 75%
percentile that shows the same behavior as for the 445.gobmk benchmark. How-
ever, the increase is significantly less than for the 445.gobmk. The 471.omnetpp
benchmark presents a similar behavior as the 445.gobmk benchmark. The most
significant difference is that the variables are, in general, accessed more often. This
is for example observable from the 50% percentile. The 483.xalancbmk shows a
significant gap between the 75% percentile and the 95% percentile. This indicating
that 25% of the used variables are accessed significantly more often that the others.

445.gobmk 471.omnetpp 483.xalancbmk

Count 185.07× 106 844.95× 106 132.80× 106

Average 1.56× 106 20.64× 103 419.30× 103

Minimum 1.00 1.00 1.00
Maximum 186.74× 106 845.93× 106 133.66× 106

Percentile 5% 3.00 1.00 2.00
Percentile 25% 3.00 7.00 18.00
Percentile 50% 73.00 41.00 394.00
Percentile 75% 29.63× 103 388.00 2.91× 103

Percentile 95% 11.05× 106 5.53× 103 14.52× 103

Table 5.3: Metric: Access Distance

Table 5.3 presents the results about the access distance for the benchmarks
445.gobmk, 471.omnetpp, and 483.xalancbmk. Table 2 presents the results for all
benchmarks. Count represents the number of different access distances observed
for a benchmark. This table shows a large gap between the minimum and the
maximum access distance. The table show that the minimum is 1 for all benchmarks
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that indicates that at least one variable is accessed twice without accessing another
variable in between. The maximum indicates that there is at least one variable
for all three benchmarks which is accessed rarely. The average access distance is
significantly smaller than the maximum. The percentiles offer a deeper knowledge
about the actual access distances. The 50% percentile is identical to the median. It
shows for the 445.gobmk benchmark that 50% of the used variables have an access
distance of less equal to 73. That is several magnitudes less than the average. For
the other two benchmarks the situation is similar, 471.omnetpp presents an 50%
percentile of 41 and the 483.xalancbmk show a value of 394.

445.gobmk 471.omnetpp 483.xalancbmk

Count 1.68× 106 10.09× 106 1.11× 106

Average 32.33× 106 19.25× 106 1.67× 106

Minimum 67.00 83.00 75.00
Maximum 65.85× 106 38.41× 106 3.63× 106

Percentile 5% 4.11× 106 2.03× 106 288.75× 103

Percentile 25% 16.82× 106 9.68× 106 936.69× 103

Percentile 50% 30.20× 106 19.25× 106 1.64× 106

Percentile 75% 49.19× 106 28.82× 106 2.32× 106

Percentile 95% 63.22× 106 36.47× 106 3.31× 106

Table 5.4: Metric: Overlapping Liveness

Table 5.4 presents the results about the access distance for the benchmarks
445.gobmk, 471.omnetpp, and 483.xalancbmk. Table 3 presents the results for all
benchmarks. Count represents the number of overlapping liveness intervals. The
table shows that for the 445.gobmk benchmark at least 67 variables are live at the
same time, and respectively 83 at the 471.omnetpp, and 75 at the 283.xalancbmk.
The 5% percentile for all three benchmarks shows that there are significantly more
variables live at the same time during the execution. This indicates that the work-
ing set of these three benchmarks definitely does not fit into the cache for this
experiment.

445.gobmk 471.omnetpp 483.xalancbmk

Count 74.99× 106 271.46× 106 29.48× 106

Average 1.40× 106 53.34× 103 327.13× 103

Minimum 0.00 0.00 0.00
Maximum 186.74× 106 845.94× 106 133.66× 106

Percentile 5% 0.00 0.00 0.00
Percentile 25% 0.00 6.00 8.00
Percentile 50% 0.00 35.00 63.00
Percentile 75% 0.00 112.00 529.00
Percentile 95% 156.00 2.49× 103 8.96× 103

Table 5.5: Metric: Liveness Interval Length
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Table 5.5 presents the results about the access distance for the benchmarks
445.gobmk, 471.omnetpp, and 483.xalancbmk. Table 4 presents the results for all
benchmarks. Count represents the number of different liveness interval lengths.
The results of the 445.gobmk benchmark indicate that most variables have short
liveness intervals. This is indicated by the percentiles 5%, 25%, 50%, and 75%,
which all show value 0. In this context 0 means that a variable is live for exactly
one access. Hence, 75% of the variables of the 445.gobmk benchmark are accessed
only once. By the delta of the 75% percentile and 95% percentile we know that
20% percent of the used variables are have a liveness interval of a length up to
156. In combination with the fact that all variables used accumulate to an average
liveness interval length of 1402011.75, this implies that 5% of the variables used
by 445.gobmk consists of a significantly longer liveness interval. The results of the
471.omnetpp benchmark and the 483.xalancbmk benchmark indicate that there is
a small amount of variables that are significantly longer than the majority of the
used variables.

Figure 5.11 presents the results of all statistical metrics of all benchmarks. Note
that the y-axis is logarithmic and the x-axis is linear.

Figure 5.11a presents the liveness interval lengths on the y-axis. On the x-
axis the liveness interval lengths of all variables are shown in decreasing order. As
illustrated by Figure 5.11a, over 90% of the liveness intervals of the 445.gobmk are
of length 1 and less than 5% are of a length longer than 5. Approximately 20% of
the liveness intervals of the 462.libquantum benchmark are of a length greater equal
5, less than 10% are of a length greater or equal 100, and over 65% of the liveness
intervals are of length 1. The 471.omnetpp benchmarks consists of approximately
5% of liveness intervals with a length greater 100, slightly more than 10% are of a
length great than 1, and slightly less than 90% of the liveness intervals are of length
1. Approximately 20% of the liveness intervals of the 483.xalancbmk benchmark
are of a length greater than 1 and approximately 5% of the liveness intervals are of
a length greater than 2

Figure 5.11b shows the number of overlapping liveness intervals on the y-axis.
The 445.gobmk benchmark presents the most overlapping liveness intervals. Dif-
ferent to the other benchmarks the shape of the 445.gobmk benchmark decreases
with several steps. The 462.libquantum benchmark is one of the benchmarks with
the fewest overlapping liveness intervals. The number of liveness intervals reduces
linearly. The 471.omnetpp benchmark consists of significantly more overlapping
liveness intervals than all other benchmarks except the 445.gobmk benchmark. In
difference to the 445.gobmk benchmark the number of overlapping liveness intervals
of the 471.omnetpp benchmark decreases linearly. The 483.xalancbmk benchmark
is one of the benchmarks with the fewest overlapping liveness intervals. The number
of overlapping liveness intervals decreases linear.

Figure 5.11c shows the number of accesses at a variable on the y-axis. On the
x-axis the values of all variables are shown in a decreasing order. Approximately 5%
of the variables of the 445.gobmk benchmark are accessed more often than 20 times,
almost 3% are accessed less than 20 times, and the remaining ∼92% of the variables
are accessed exactly 20 times. For the 462.libquantum benchmark approximately
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35% of the variables are accessed once, ∼15% are accessed 2 times, almost 40% of
the variables are accessed more often than 2 times and less often than 200 times,
and less than 10% are accessed over 200 times. 10% of the 471.omnetpp benchmarks
variables are accessed less than 20 times, approximately 85% of the variables are
accessed between 20 and 400 times, and the remaining around 5% of the variables
are accessed over 400 times. Almost 45% of the variables of the 483.xalancbmk
benchmark are accessed at most 10 times, approximately 30% of the variables are
accessed between 10 and 20 times, almost 15% are accessed between 20 and 100
times, and the remaining ∼ 10% are accessed more often than 100 times.

Figure 5.11d illustrates the access distances on the y-axis and on the x-axis all
observed values are shown in decreasing order. Only approximately 35% of the
access distances of the 445.gobmk benchmark are greater than 1, less than 10%
are greater than 10, and just a few percentage of the access distances are greater
than 100. Over 50% of the access distances of the 462.libquantum benchmark are
greater than 1, almost 32% are greater than 5, less than 5% of the access distances
are greater than 100, and less than 3% are even greater then 1000. Slightly less than
40% of the access distances are greater than 1, approximately 35% are greater than
3, and only less than 20% are greater than 3. Less than 30% of the access distances
are greater than 1, approximately 20% are of access distance 2, and roughly 2% of
the access distances are greater than 10.

5.4 Conclusion

Chapter 5 presents an experiment based on our environment to illustrate the differ-
ence of our cache implementations, of our allocator implementations, and the used
benchmarks. The correlation of speedup and compaction proves that there are sev-
eral benchmarks that show an outstanding good results: 445.gobmk, 471.omnetpp,
and 483.xalancbmk.

The 445.gobmk benchmark demonstrates that there is potential for performance
improvement by picking the appropriate allocator. In this case namely Compact-
Stack and CompactSet. Furthermore, it also illustrates that the performance can
become significantly worse than the base line performance by deciding on one of
the other allocators. For this benchmark the CompactQueue allocators presents
the worst performance results. The 445.gobmk benchmark is characterized by few
accesses and extremely short liveness intervals for most of the used variables that
lead to a significant performance improvement indicated by the speedup.

The 471.omnetpp benchmark presents less potential for performance improve-
ment. Nevertheless, the MIN caches end up with quite close to the optimal CPA.
That is quite impressive facing that small margin of potential improvement. Un-
fortunately, none of our allocators is able to result in a speedup greater than one.
However, the 471.omnetpp benchmark presents a remarkable compaction. Using
one of our compacting allocators reduced the necessary memory nearly by 40 times.
The 471.omnetpp benchmark is characterized by short access distances and short
liveness intervals for most of the used variables, that yields in a dramatical reduction
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Figure 5.11: Statistical analysis: metrics overview

for the memory required to execute this benchmark.
The 483.xalancbmk presents a significant gap in terms of performance for the

LRU and MIN cache implementations. Further, the CompactStack allocator is
the only implementation that is able to perform better than the original trace.
As for the benchmarks 445.gobmk and 471.omnetpp, the CompactQueue allocator
presents the worst performance. The 483.xalancbmk benchmark is characterized by
few accesses and long liveness intervals for most of the used variables, this indicates
that long liveness intervals are not beneficial for the performance.

In most of our experiments, the results of the CompactQueue allocator have
been outperformed by the CompactStack allocator, or the CompactSet allocator,
or both. Intuitively, the CompactQueue implementation picks always the variable
which has been freed least recently (longest ago). While the stack implementation
of the free list enables the CompactStack to pick the most recently freed variable
(shortest ago). Obviously, the most recently freed variable has a higher probability
to still be in the cache than the variable least recently freed.



CHAPTER 6
Conclusion & Future Work

In this work, we have analyzed the memory access traces of nine benchmarks taken
from two different benchmark suits, SPEC 2006 and V8. We have transformed
the observed traces of all benchmarks by using different allocators: Identity, Com-
pactStack, CompactSet, CompactQueue, and SingleAssignment. Each of the trans-
formed traces has been executed on four different caches to observe the data about
their performance and memory usage. These four caches use two different algo-
rithms to decide on an eviction candidate, namely LRU and Belady. For each
eviction policy, there is one version that uses the liveness information of a trace and
a second one that proceeds without using liveness information. We analyzed the ob-
served memory access trace according to the four metrics: accesses, access distance,
liveness interval length, and overlapping liveness. The presented experiments illus-
trate that the analyzed memory access traces have potential for improvement. Our
extremely simple allocators used for transformation reveal that each trace uses at
least twice the memory than necessary. However, the drawback of these extremely
simple allocators is shown in the performance results, most benchmarks achieve a
worse performance after transformation. The defined metrics used to reason about
performance and memory usage, illustrate tendencies for improvement rather than
unique characteristics. We were able to show that even modern computer programs
have not reached there limits yet, their is still space for improvement. Unfortunately,
the chosen metrics are not as expressive than what we have assumed.

Implementation of more sophisticated allocators that improve the quality of the
trace transformations remains as future work. Further, the set of available caches
could be extended by implementing additional eviction policies. Moreover, other
benchmark suites could be integrated and analyzed. The additional data could lead
to further metrics that may allow stronger statements or reveal new characteristics.
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Appendix

Experiment

This section presents all additional figures of Chapter 5.
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Figure 1: Performance: 450.soplex
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Figure 2: Performance: 454.calculix
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Figure 3: Performance: 462.libquantum
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Figure 4: Performance: deltablue
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Figure 5: Performance: raytrace
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Figure 6: Performance: richards
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Figure 7: Speedup & Compaction: 450.soplex
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Figure 8: Speedup & Compaction: 454.calculix
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Figure 9: Speedup & Compaction: 462.libquantum
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Figure 10: Speedup & Compaction: deltablue
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Figure 11: Speedup & Compaction: raytrace
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Figure 12: Speedup & Compaction: richards

Benchmark Count Average Minimum Maximum

445.gobmk 1.67× 106 111.56 1.00 12.06× 106

450.soplex 166.83× 103 123.38 1.00 343.77× 103

454.calculix 349.87× 103 151.56 1.00 584.28× 103

462.libquantum 28.20× 103 3.52× 103 1.00 27.18× 106

471.omnetpp 983.77× 103 859.89 1.00 19.44× 106

483.xalancbmk 859.19× 103 155.57 1.00 2.42× 106

richards 729.83× 103 113.58 1.00 1.14× 106

raytrace 1.25× 106 49.62 1.00 441.41× 103

deltablue 1.37× 106 198.17 1.00 3.44× 106

Benchmark
Percentile

5% 25% 50% 75% 95%

445.gobmk 20.00 20.00 20.00 20.00 23.00
450.soplex 1.00 2.00 7.00 34.00 324.00
454.calculix 2.00 10.00 28.00 90.00 309.00
462.libquantum 1.00 1.00 3.00 63.00 18.63× 103

471.omnetpp 5.00 51.00 93.00 164.00 391.00
483.xalancbmk 1.00 8.00 11.00 23.00 454.00
richards 1.00 1.00 2.00 5.00 31.00
raytrace 1.00 1.00 5.00 11.00 46.00
deltablue 1.00 1.00 3.00 11.00 76.00

Table 1: Metric: Accesses
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Benchmark Count Average Minimum Maximum

445.gobmk 185.07× 106 1.56× 106 1.00 186.74× 106

450.soplex 20.42× 106 41.84× 103 1.00 20.58× 106

454.calculix 52.68× 106 64.58× 103 1.00 53.02× 106

462.libquantum 99.14× 106 9.04× 103 1.00 99.16× 106

471.omnetpp 844.95× 106 20.64× 103 1.00 845.93× 106

483.xalancbmk 132.80× 106 419.30× 103 1.00 133.66× 106

richards 82.16× 106 53.13× 103 1.00 82.88× 106

raytrace 60.77× 106 302.61× 103 1.00 62.01× 106

deltablue 270.79× 106 274.60× 103 1.00 272.16× 106

Benchmark
Percentile

5% 25% 50% 75% 95%

445.gobmk 3.00 3.00 73.00 29.63× 103 11.05× 106

450.soplex 1.00 5.00 38.00 4.99× 103 180.40× 103

454.calculix 1.00 3.00 33.00 347.00 22.70× 103

462.libquantum 1.00 3.00 4.00 6.20× 103 8.05× 103

471.omnetpp 1.00 7.00 41.00 388.00 5.53× 103

483.xalancbmk 2.00 18.00 394.00 2.91× 103 14.52× 103

richards 1.00 11.00 30.00 400.00 3.71× 103

raytrace 1.00 9.00 32.00 317.00 65.73× 103

deltablue 1.00 14.00 63.00 499.00 11.44× 103

Table 2: Metric: Access Distance
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Benchmark Count Average Minimum Maximum

445.gobmk 1.68× 106 32.33× 106 67.00 65.85× 106

450.soplex 107.37× 103 626.78× 103 38.00 1.20× 106

454.calculix 385.20× 103 906.99× 103 95.00 1.64× 106

462.libquantum 230.82× 103 648.54× 103 45.00 1.26× 106

471.omnetpp 10.09× 106 19.25× 106 83.00 38.41× 106

483.xalancbmk 1.11× 106 1.67× 106 75.00 3.63× 106

richards 636.77× 103 2.21× 106 23.00 4.09× 106

raytrace 654.01× 103 2.24× 106 10.00 4.53× 106

deltablue 2.08× 106 9.47× 106 49.00 18.69× 106

Benchmark
Percentile

5% 25% 50% 75% 95%

445.gobmk 4.11× 106 16.82× 106 30.20× 106 49.19× 106 63.22× 106

450.soplex 68.15× 103 374.24× 103 593.51× 103 910.96× 103 1.13× 106

454.calculix 173.42× 103 651.57× 103 951.77× 103 1.17× 106 1.54× 106

462.libquantum 88.08× 103 342.48× 103 646.11× 103 960.22× 103 1.21× 106

471.omnetpp 2.03× 106 9.68× 106 19.25× 106 28.82× 106 36.47× 106

483.xalancbmk 288.75× 103 936.69× 103 1.64× 106 2.32× 106 3.31× 106

richards 570.47× 103 1.27× 106 2.21× 106 3.15× 106 3.90× 106

raytrace 575.99× 103 1.24× 106 2.19× 106 3.16× 106 4.19× 106

deltablue 943.90× 103 4.64× 106 9.42× 106 14.39× 106 17.70× 106

Table 3: Metric: Overlapping Liveness



66 APPENDIX

Benchmark Count Average Minimum Maximum

445.gobmk 74.99× 106 1.40× 106 0.00 186.74× 106

450.soplex 3.29× 106 179.40× 103 0.00 20.58× 106

454.calculix 10.45× 106 270.48× 103 0.00 53.03× 106

462.libquantum 6.40× 106 132.95× 103 0.00 99.16× 106

471.omnetpp 271.46× 106 53.34× 103 0.00 845.94× 106

483.xalancbmk 29.48× 106 327.13× 103 0.00 133.66× 106

richards 17.97× 106 169.47× 103 0.00 82.89× 106

raytrace 18.62× 106 212.00× 103 0.00 62.02× 106

deltablue 61.46× 106 236.30× 103 0.00 272.17× 106

Benchmark
Percentile

5% 25% 50% 75% 95%

445.gobmk 0.00 0.00 0.00 0.00 156.00
450.soplex 0.00 0.00 25.00 2.04× 103 261.28× 103

454.calculix 0.00 9.00 66.00 7.14× 103 370.54× 103

462.libquantum 0.00 4.00 14.13× 103 25.32× 103 144.11× 103

471.omnetpp 0.00 6.00 35.00 112.00 2.49× 103

483.xalancbmk 0.00 8.00 63.00 529.00 8.96× 103

richards 0.00 1.00 11.00 70.00 1.95× 103

raytrace 0.00 1.00 15.00 81.00 14.11× 103

deltablue 0.00 0.00 12.00 41.00 932.00

Table 4: Metric: Liveness Interval Length
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